[1] KIM K T. Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor[J]. Combustion and Flame, 2016, 171:137-151. [2] KIM D, PARK S W. Forced and self-excited oscillations in a natural gas fired lean premixed combustor[J]. Fuel Processing Technology, 2010, 91(11):1670-1677. [3] HAN Z Y, HOCHGREB S. The response of stratified swirling flames to acoustic forcing:Experiments and comparison to model[J]. Proceedings of the Combustion Institute, 2015, 35(3):3309-3315. [4] DHANUKA S K, TEMME J E, DRISCOLL J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2):2901-2908. [5] STOUFFER S, BALLAL D, ZELINA J, et al. Development and combustion performance of high pressure WSR and TAPS combustor:AIAA-2005-1416[R]. Reston, VA:AIAA, 2005. [6] MONGIA H. TAPS:A fourth generation propulsion combustor technology for low emissions:AIAA-2003-2657[R]. Reston, VA:AIAA, 2003. [7] DHANUKA S K, TEMME J E, DRISCOLL J F. Unsteady aspects of lean premixed prevaporized gas turbine combustors:Flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3):631-641. [8] ZHANG C, ZOU P F, WANG B S, et al. Comparison of flame dynamics at stable and near-LBO conditions for swirl-stabilized kerosene spray combustion:GT2015-42596[R]. New York:ASME, 2015. [9] 秦皓, 丁志磊, 李海涛, 等. LESS燃烧室非定常旋流流动[J]. 航空动力学报, 2015, 30(7):1566-1575. QIN H, DING Z L, LI H T, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7):1566-1575(in Chinese). [10] 汤冠琼, 秦皓, 林宇震, 等. 当量比对分层旋流火焰燃烧不稳定性的影响[J]. 推进技术, 2015, 36(9):1355-1360. TANG G Q, QIN H, LIN Y Z, et al. Effects of equivalence ratio on combustion instability characteristics of staged swirl flame[J]. Journal of Propulsion Technology, 2015, 36(9):1355-1360(in Chinese). [11] 秦皓, 汤冠琼, 林宇震, 等. 燃油分级比对LESS燃烧室压力振荡频率的影响[J]. 航空动力学报, 2015, 30(6):1337-1343. QIN H, TANG G Q, LIN Y Z, et al. Influence of fuel stage ratio on pressure oscillation frequency of LESS combustor[J]. Journal of Aerospace Power, 2015, 30(6):1337-1343(in Chinese). [12] FU Z B, LIN Y Z, LI L, et al., Experimental and numerical studies of a lean-burn internally-staged combustor[J]. Chinese Journal of Aeronautics, 2014, 27(3):488-496. [13] QIN H, LIN Y Z, LI J B. Precessing motion in stratified radial swirl flow[J]. Chinese Journal of Aeronautics, 2016, 29(2):386-394. [14] 秦皓, 付镇柏, 林宇震, 等. 基于燃烧室压力振荡的火焰筒结构优化[J]. 航空动力学报, 2015, 30(5):1076-1083. QIN H, FU Z B, LIN Y Z, et al. Investigation on liner structure optimization based on pressure oscillation in combustors[J]. Journal of Aerospace Power, 2015, 30(5):1076-1083(in Chinese). [15] 秦皓, 丁志磊, 林宇震, 等. 同心分级旋流结构的动态响应特征[J]. 航空动力学报, 2015, 30(4):793-799. QIN H, DING Z L, LIN Y Z, et al. Dynamic response characteristic of concentric stage swirling structure[J]. Journal of Aerospace Power, 2015, 30(4):793-799(in Chinese). [16] HAN X, HUI X, QIN H, et al. Effect of the diffuser on the inlet acoustic boundary in combustion-acoustic coupled oscillation:GT2016-57046[R]. New York:ASME, 2016. [17] HUANG Y, YANG V. Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor:Transition from stable to unstable flame[J]. Combustion and Flame, 2004, 136(3):383-389. [18] KIM K T, HOCHGREB S. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations[J]. Combustion and Flame, 2011, 158(12):2482-2499. [19] HOCHGREB S, DENNIS D, AYRANCI I, et al. Forced and self-excited instabilities from lean premixed, liquid-fuelled aeroengine injectors at high pressures and temperatures:GT2013-95311[R]. New York:ASME, 2013. [20] SWEENEY M S, HOCHGREB S, DUNN M J, et al. The structure of turbulent stratified and premixed methane/air flames I:Non-swirling flows[J]. Combustion and Flame, 2012, 159(9):2896-2911. [21] SWEENEY M S, HOCHGREB S, DUNN M J, et al. The structure of turbulent stratified and premixed methane/air flames Ⅱ:Swirling flows[J]. Combustion and Flame, 2012, 159(9):2912-2929. [22] ZHOU R G, HOCHGREB S. The behaviour of laminar stratified methane/air flames in counterflow[J]. Combustion and Flame, 2013, 160(6):1070-1082. [23] CHONG C T, LAM S S, HOCHGREB S. Effect of mixture flow stratification on premixed flame structure and emissions under counter-rotating swirl burner configuration[J]. Applied Thermal Engineering, 2016, 105:905-912. [24] TEMME J E, ALLISON P M, DRISCOLL J F. Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV[J]. Combustion and Flame, 2014, 161(4):958-970. [25] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines:Operational experience, fundamental mechanisms and modeling:AIAA-2005-0210[R]. Reston, VA:AIAA, 2005. [26] HARDALUPAS Y, ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame, 2004,139(3):188-207. [27] SAMANIEGO J M, EGOLFOPOULOS F N, BOWMAN C T. CO2* chemiluminescence in premixed flames[J]. Combustion Science and Technology, 1995, 109(1-6):183-203. [28] AYOOLA B O, BALACHANDRAN R, FRANK J H, et al. Spatially resolved heat release rate measurements in turbulent premixed flames[J]. Combustion and Flame, 2006, 144(1-2):1-16. [29] BARNETT H C, HIBBARD R R. Basic considerations in the combustion of hydrocarbon fuels with air:1957-1300[R]. Washington, D.C.:NACA, 1957. [30] ANDREWA G E, BRADLEY D. The burning velocity of methane-air mixtures[J]. Combustion and Flame, 1972, 19(2):275-288. |