[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J]. 力学进展, 2009, 39(6):658-673. CUI E J. Research status development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese).
[2] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989.
[3] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 2001. QU Z H. Hypersonic aerodynamics[M]. Changsha:National University of Defence Technology Press, 2001(in Chinese).
[4] 徐华舫. 空气动力学基础[M]. 北京:国防工业出版社, 1979. XU H F. Fundamentals of aerodynamics[M]. Beijing:National Defence Industry Press, 1979(in Chinese).
[5] GOULARD R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Journal of Jet Propulsion, 1958, 28(11):737-745.
[6] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory:AIAA-2000-2366[R]. Reston, VA:AIAA, 2000.
[7] STEWART D A, CHEN Y K, BAMFORD B J,et al. Predicting material surface catalytic effciency using arc-jet tests:AIAA-1995-2013[R]. Reston, VA:AIAA, 1995.
[8] SCOTT C D. Catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation:AIAA-1980-1477[R]. Reston, VA:AIAA, 1980.
[9] KOVALEV V L, KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry[J]. Fluid Dynamics, 2005, 40(5):669-693.
[10] VLASOV A V, ZALOGIN G N, ZEMLYANSKⅡ B A, et al. Methods and results of an experimental determi nation of the catalytic activity of materials at high temperatures[J]. Fluid Dynamics, 2003, 38(5):815-825.
[11] MATTHEW M, ERIC M, RONALD P, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2):470-474.
[12] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese).
[13] NASUTI F, BRUNO C. Material-dependent catalytic recombination modeling for hypersonic flows:AIAA-1993-2840[R]. Reston, VA:AIAA,1993.
[14] BARBATO M. Modelling catalytic recombination heating at hypersonic speeds:AIAA-1989-0309[R]. Reston, VA:AIAA, 1989.
[15] KUROTAKI T, ITO T, MATSUZAKI T,et al. CFD evaluation of pressure effects on surface catalysis of SiO2-based TPS:AIAA-2005-0388[R]. Reston, VA:AIAA, 2005.
[16] MIZUNO M, ITO T, MATSUZAKI T,et al. Experimental and numerical investigation of catalytic efficiency of atomic oxygen recombination on TPS surfaces:AIAA-2009-3934[R]. Reston, VA:AIAA, 2009.
[17] MARSCHALL J, FLETCHER D. Optical emission spectroscopy during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramic composites[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(2):43-52.
[18] GREAVES J, LINNETT J. Recombination of atoms at surfaces. Part 6-Recombination of oxygen atoms on silica from 20℃ to 600℃[J].Transactions of the Faraday Society, 1959, 55(2):1355-1361.
[19] KIM Y C, BOUDART M. Recombination of O, N and H atoms on silica:Kinetics and mechanism[J]. Langmuir, 1991, 7:2999-3005.
[20] STEWART D A, LEISER D B,KOLODZIEJ P,et al. Thermal response of integral multicomponent composite thermal protection systems[J]. Journal of Spacecraft and Rockets, 1986, 23(4):420-427.
[21] SCOTT C D. Catalytic recombination of nitrogen and oxygen on iron-cobalt-chromia spinel:AIAA-1983-0585[R]. Reston, VA:AIAA,1983.
[22] WILLEY R J. Comparison of kinetic models for atom re-combination on high-temperature reusable surface insu-lation[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1):55-62.
[23] STEWART D A, RAKICH J V, LANFRANCO M J. Catalytic surfaces effects on space shuttle thermal protection system during earth entry of flights STS-2 through STS-5:NASA CP-2283[R]. Washington, D.C.:NASA, 1983.
[24] STEWART D A, KOLODZIEJ P, LEISER D B. Effect of variable surface catalysis on heating near stagnation point of a blunt body:AIAA-1985-0248[R]. Reston, VA:AIAA,1985.
[25] STEWART D A. Determination of surface catalytic efficiency for thermal protection materials-room temperature to their upper use limit:AIAA-1996-1863[R]. Reston, VA:AIAA,1996. |