[1] 刘震宇, 马小兵, 赵宇. 非恒定温度场合弹上性能退化型部件贮存可靠性评估[J]. 航空学报, 2012, 33(9):1671-1678. LIU Z Y, MA X B, ZHAO Y. Storage reliability assessment for missile component with degradation failure mode in a temperature varying environment[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1671-1678(in Chinese).
[2] 赵建忠, 叶文, 张磊. 基于数据融合和改进新陈代谢不等间距GM(1,1)模型的导弹装备故障预测[J]. 兵工学报, 2014, 35(10):1689-1695. ZHAO J Z, YE W, ZHANG L. Failure prediction of missile equipment based on data fusion and AMUGM(1,1) model[J]. Acta Armamentarii, 2014, 35(10):1689-1695(in Chinese).
[3] 徐廷学. 基于定期检测的导弹贮存可靠性研究[J]. 弹箭与制导学报, 2008, 28(1):248-250. XU T X. Study on storage reliability based on periodical test for missile[J]. Journal of Projectiles, Rockets, Missile and Guidance, 2008, 28(1):248-250(in Chinese).
[4] 王浩伟, 徐廷学, 赵建忠. 融合加速退化和现场实测退化数据的剩余寿命预测方法[J]. 航空学报, 2014, 35(12):3350-3357. WANG H W, XU T X, ZHAO J Z. Residual life prediction method fusing accelerated degradation and field degradation data[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3350-3357(in Chinese).
[5] LOUTAS T H, ROULIAS D, GEORGOULAS G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression[J]. IEEE Transactions on Reliability, 2013, 62(4):821-832.
[6] LIAO L X. Discovering prognostic features using genetic programming in remaining useful life prediction[J]. IEEE Transactions on Industrial Electrics, 2014, 61(5):2464-2472.
[7] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation-A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14.
[8] 张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述[J]. 机械工程学报, 2011, 47(11):100-116. ZHANG X L, CHEN X F, LI B, et al. Review of life prediction for mechanical major equipments[J]. Journal of Mechanical Engineering, 2011, 47(11):100-116(in Chinese).
[9] HUANG W, ASKIN R G. Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation[J]. Quality and Reliability Engineering International, 2003, 19(3):241-254.
[10] 张祥坡, 尚建忠, 陈循, 等. 三参数Weibull分布竞争失效场合变应力加速寿命试验统计分析[J]. 兵工学报, 2013, 34(12):1603-1610. ZHANG X P, SHANG J Z, CHEN X, et al. Statistical inference of varying-stress accelerated life test with competing failures based on three-parameter Weibull distribution[J]. Acta Armamentarii, 2013, 34(12):1603-1610(in Chinese).
[11] 罗湘勇, 黄小凯. 基于多机理竞争退化的导弹贮存可靠性分析[J]. 北京航空航天大学学报, 2013, 39(5):701-705. LUO X Y, HUANG X K. Storage reliability analysis of missile based on multi-mechanism competition degradation model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013,39(5):701-705(in Chinese).
[12] LUO W, ZHANG C H, CHEN X, et al. Accelerated reliability demonstration under competing failure modes[J]. Reliability Engineering and System Safety, 2015, 136:75-84.
[13] PAN Z Q, BALAKRISHNAN N, SUN Q, et al. Bivariate degradation analysis of products based on Wiener processes and copulas[J]. Journal of Statistical Computation and Simulation, 2013, 83(7):1316-1329.
[14] WANG X L, BALAKRISHNAN N, GUO B, et al. Residual life estimation based on bivariate non-stationary gamma degradation process[J]. Journal of Statistical Computation and Simulation, 2015, 85(2):405-421.
[15] YE Z S, TANG L C, XU H Y. A distribution-based systems reliability model under extreme shocks and natural degradation[J]. IEEE Transactions on Reliability, 2011, 60(1):246-256.
[16] ZHANG X P, SHANG J Z, CHEN X, et al. Statistical inference of accelerated life testing with dependent competing failures based on copula theory[J]. IEEE Transactions on Reliability, 2014, 63(3):764-778.
[17] 王华伟, 高军, 吴海桥. 基于竞争失效的航空发动机剩余寿命预测[J]. 机械工程学报, 2014, 50(6):197-204. WANG H W, GAO J, WU H Q. Residual remaining life prediction based on competing failures for aircraft engines[J]. Journal of Mechanical Engineering, 2014, 50(6):197-204(in Chinese).
[18] 王浩伟, 奚文骏, 冯玉光. 基于退化失效与突发失效竞争的导弹剩余寿命预测[J]. 航空学报, 2016, 37(4):1240-1248. WANG H W, XI W J, FENG Y G. Reliability model and evaluation method of products in competing failure modes[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1240-1248(in Chinese).
[19] JIANG L, FENG Q, COIT D W. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[J]. IEEE Transactions on Reliability, 2012, 61(4):932-948.
[20] WANG Y, PHAM H. Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[J]. IEEE Transactions on Reliability, 2012, 61(1):13-22.
[21] SI X S, WANG W B, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2):219-237.
[22] WANG X, XU D. An inverse Gaussian process model for degradation data[J]. Technometrics, 2010, 52(2):188-197.
[23] WANG H W, XU T X, MI Q L. Lifetime prediction based on Gamma processes from accelerated degradation data[J]. Chinese Journal of Aeronautics, 2015, 28(1):172-179.
[24] PAN Z Q, BALAKRISHNAN N. Reliability modeling of degradation of products with multiple performance characteristics based on Gamma processes[J]. Reliability Engineering & System Safety, 2011, 96(8):949-957.
[25] EFRON B. Better bootstrap confidence intervals[J]. Journal of American Statistical Association, 1987, 82(397):171-185.
[26] MARKS C E, GLEN A G, ROBINSON M W, et al. Applying bootstrap methods to system reliability[J]. The American Statistician, 2014, 68(3):174-180. |