[1] Von Schlippe B. The question of spontaneous wing oscillation: determination of critical velocity through flight-oscillation tests[J]. Luftfahrtforschung, 1936, 13(2): 41-45.
[2] Kohoe M. W. A history overview of flight flutter testing, NASA TM-4720[R]. Edwards: NASA Dryden Flight Research Center, 1995.
[3] Kayran A. Flight flutter testing and aeroelastic stability of aircraft[J]. Aircraft Engieering and Aerospace Technology: An International Journal, 2007, 79(5): 494-506.
[4] Dimitriadis G, Cooper J E. Flutter prediction from flight flutter test data[J]. Journal of Aircraft, 2001, 38(2): 355-367.
[5] Lind R. Flight-test evaluation of flutter prediction methods[J]. Journal of Aircraft, 2003, 40(5): 964-970.
[6] Zimmerman N H, Weissenburger J T. Prediction of flutter onset speed based on flight testing at subcritical speeds[J]. Journal of Aircraft, 1964, 1(4): 190-202.
[7] Cooper J E, Emmet P R, Wright J, et al. Envelope function: a tool for analyzing flutter data[J]. Journal of Aircraft, 1993, 30(5): 785-790.
[8] Matsuzaki Y, Ando Y. Estimation of flutter boundary from random responses due to turbulence at subcritical speeds[J]. Journal of Aircraft, 1981, 18(10): 826-868.
[9] Nissim E, Gilyard G B. Method for experimental determination of flutter speed by parameter identification, AIAA-1989-1324[R]. Reston: AIAA, 1989.
[10] Lind R. A presentation on robust flutter margin analysis and a flutterometer, NASA TM-97-206220 [R]. Edwards: NASA Dryden Flight Research Center, 1997.
[11] Zeng Q H, Zhang L M, Zhang C N. Data analysis and software development for flight flutter test[J]. Acta Aeronautica et Astronautica Sinica,1994,12(15): 1482-1485 (in Chinese). 曾庆华, 张令弥, 张春宁. 飞行颤振试验数据处理方法及软件研制[J].航空学报, 1994, 12(15): 1482-1485.
[12] Qu J Z, Sha C A. Application of identification method of modal parameter to flight flutter test[J]. Acta Aeronautica et Astronautica Sinica, 1990,11(11): A618-A622 (in Chinese). 屈见忠, 沙长安.模态参数识别在飞行颤振试验中的应用[J].航空学报, 1990, 11(11): A618-A622.
[13] Vecchio A, Peeters B, Vander Auweraer H. Application of advanced parameter estimators to the analysis of in-flight measured data[C]//Proceedings of the 20th International Modal Analysis Conference. Los Angeles: Society for Experimental Mechanics, 2002: 923-929.
[14] Lee B H K, Ben-Neticha Z. Analysis of flight flutter test data[J]. Canadian Aeronautics and Space Journal, 1992,38(4): 156-163.
[15] Koenig K. Flight vibration analysis-methods, theory and application, AIAA-1983-2752[R]. Reston: AIAA, 1983.
[16] Cooper J E. Parameter estimation methods for flight flutter testing[C]//The 80th Meeting of the AGARD Structures and Materials Panel. Rotterdam: AGARD Advisory Group for Aerospace Research and Development,1995: 121-132.
[17] Shelley S J, Pickrel C R. New concepts for flight flutter parameter estimation[C]//Proceedings of the 15th International Modal Analysis Conference. Orlando: SPIE-International Society for Optical Engineering,1997: 490-496.
[18] Crowther W J, Cooper J E. Flight test flutter prediction using neural networks[J]. Journal of Aerospace Engineering, 2001, 215(1): 37-47.
[19] Chen K F, Jiao Q Y. Modal parameters identification of an aircraft under flutter test flying[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 526-530 (in Chinese). 陈奎孚, 焦群英. 某型飞机颤振试飞数据的模态参数识别[J]. 航空学报, 2003, 24(6): 526-530.
[20] Marchitti M. Averaging apectral functions fron in flight flutter siganal[J]. Mechanical Systems and Signal Processing, 2006, 20(3): 757-761.
[21] Tang W, Shi Z K, Li H C. Frequency-domain GTLS identification combined with time-frequency filtering for flight flutter modal parameter identification[J]. Chinese Journal of Aeronautics, 2006, 19(1): 44-51.
[22] Lu X D. Flutter flight test parameters identification of large aircraft with low-frequency and closely-spaced modes [J]. Flight Dynamic, 2014, 32(3): 270-272 (in Chinese). 卢晓东.大型飞机颤振试飞低频密集模态参数辨识[J].飞行力学, 2014, 32(3): 270-272.
[23] Verboven P, Cauberghe B, Guillaume P, et al. Modal parameter estimation and monitoring for on-line flight flutter analysis[J]. Mechanical System and Signal Processing, 2004, 18(3): 587-610.
[24] Uhl T, Petko M. Real-time flutter detection from in-flight vibration data[J]. Key Engineering Materials, 2007, 347(679): 679-684.
[25] Ertveldt J, Lataire J, Pintelon R, et al. Flutter speed prediction based on frequency-domain identification of a time-varying system[C]//International Conference in Noise and Vibration Engineering. Leuven: ISMA, 2012: 3013-3024.
[26] Ertveldt J, Lataire J, Pintelon R,et al. Frequency-domain identification of time-varying systems for analysis and prediction of aeroelastic flutter[J]. Mechanical Systems and Signal Processing, 2014, 47(1-2): 225-242.
[27] Lind R, Brenner M, Haley S. Estimation of modal parameters using a wavelet-based approach, AIAA-1997-3836[R]. Reston: AIAA, 1997.
[28] Lind R, Brenner M. Wavelet-processed flight data for robust aeroservoelastic stability margins[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 823-829.
[29] Sahasrabudhe V, Thompson P M, Klyde D H, et al. Flutter detection using wavelet-based time-varying transfer functions, AIAA-2000-4100[R]. Reston: AIAA, 2000.
[30] Staszewski W J, Cooper J E. Wavelet approach to flutter data analysis[J]. Journal of Aircraft, 2002,39(1): 125-132.
[31] Lardies J, Gouttebroze S. Identification of modal parameters using the wavelet transform[J]. International Journal of Mechanical Sciences, 2002, 44( 11): 2263-2283.
[32] Slavie J, Simonovski I, Bolterzar M. Damping identification using a continuous wavelet transform: application to real data[J] . Journal of Sound and Vibration, 2003, 262: 291- 307.
[33] Tang W, Shi Z K. Wavelet denoising of flight flutter testing data for improvement of parameter identification[J]. Chinese Journal of Aeronautics, 2005, 18(1): 72-77.
[34] Zhang B, Shi Z K, Li J J. Flight flutter modal parameters identification with atmospheric turbulence excitation based on wavelet transformation[J]. Chinese Journal of Aeronautics, 2007, 20(5): 394-401.
[35] Tang W, Shi Z K. Wavelet identification of flight flutter modal parameters under sweep excitation[J]. Journal of Vibration and Shock, 2009, 28(2): 172-177.
[36] Dickinson M. CF-18 flight flutter test(FFT) techniques[C]//The 80th Meeting of the AGARD Structures and Materials Panel. Rotterdam: AGARD Advisory Group for Aerospace Research and Development, 1995: 133-141.
[37] Bennett R M. Application of zimmerman flutter-margin criterion to a wind-tunnel model, NASA TM-84545[R]. Hampton: NASA Langly Research Center, 1982.
[38] Kadrnka E E. Multimode instability prediction method. AIAA-1985-0737[R]. Reston: AIAA, 1987.
[39] Price S J, Lee B H K. Evaluation and extension of the flutter margin method for flight flutter prediction[J]. Journal of Aircraft, 1993, 30(3): 395-402.
[40] Lind R. Flutter margins for multimode unstable couplings with associated flutter confidence [J]. Journal of Aircraft, 2009, 46(5): 1563-1568.
[41] Poirel D, Dunn S, Porter J. Flutter-margin method accounting for modal parameter uncertainties[J]. Journal of Aircraft, 2005, 42(5): 1236-1243.
[42] Pitt D M. Flutter margin determination for single degree-of-freedom aeroelastic instabilities[C]//International Forum on Aeroelasticity and Structural Dynamics. Madrid: Associated de Ingenieros Aeronauticos de Espana, 2011:321-332.
[43] Abbasi A A, Cooper J E. Development of the envelope function for flight flutter testing[C]//23rd International Conference on Noise and Vibration Engineering. Leuven: ISMA, 2008: 1183-1196.
[44] Cooper J E, Desforges M J, Wright J R. The online envelope function - a guide to aeroelastic stability[C]//International Forum on Aeroelasticity and Structural Dynamics. Reston: AIAA, 1993: 981-998.
[45] Matsuzaki Y, Ando Y. Flutter and divergence boundary prediction from nonstationary random responses at increasing flow speeds, AIAA-1985-0691[R]. Reston: AIAA, 1985.
[46] Matsuzaki Y, Torii H. Response characteristics of a two-dimensional wing subject to turbulence near the flutter boundary[J]. Journal of Sound and Vibration, 1990,136(2): 187-199.
[47] Torii H, Matsuzaki Y. Subcritical flutter characteristics of a swept-back wing in a turbulent supersonic flow: comparison between analysis and experiment, AIAA-1992-2393[R]. Reston: AIAA, 1992.
[48] Torii H, Matsuzaki Y. Flutter boundary prediction based on nonstationary data measurement[J]. Journal of Aircraft, 1997, 34(3): 427-432.
[49] Torii H, Matsuzaki Y. Flutter margin evaluation for discrete-time systems[J]. Journal of Aircraft, 2011, 38(1): 42-47.
[50] McNamara J J, Friedmann P P. Flutter-boundary identification for time-domain computational aeroelasticity[J]. AIAA Journal, 2007, 45(7): 1546-1555.
[51] Bae J S, Kim J Y, Lee I, et al. Extension of flutter prediction parameter for multi-mode flutter system[J]. Journal of Aircraft, 2005, 42(1): 285-288.
[52] Matsuzaki Y. Flutter boundary prediction of a digitized aeroelastic multi-mode system, AIAA-2008-2316[R]. Reston: AIAA, 2008.
[53] Matsuzaki Y. Flutter boundary prediction of digitized smart multimode systems using steady-state responses, AIAA-2009-2315[R]. Reston: AIAA, 2009.
[54] Cooper J E. Comment on flutter prediction from flight flutter test data[J]. Journal of Aircraft, 2006, 43(3): 862-863.
[55] Lind R, Brenner M. Robust flutter margins of an F/A-18 aircraft from aeroelastic flight data[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 597-604.
[56] Lind R, Brenner M. Robust flutter margin analysis that incorporate flight data, NASA TP-1998-206543[R]. Edwards: Dryden Flight Research Center, 1998..
[57] Lind R, Brenner M. Robust aeroservoelastic stability analysis: flight test application[M]. London: Springer Verlag, 1999: 55-195.
[58] Packard A, Doyle J. The complex structured singularvalue[J]. Automatica, 1993, 29(1): 71-109.
[59] Balas G, Doyle J, Glover K, et al. μ-analysis and synthesis toolbox user’s guide[M]. Natick MA: The MathWorks, 1991, 4: 3-84.
[60] Lind R, Brenner M. Flutterometer: an on-line tool to predict robust flutter margins[J]. Journal of Aircraft, 2000, 37(6): 1105-1112.
[61] Borglund D. The μ-k method for method for robust flutter solution[J]. Journal of Aircraft, 2004, 41(5): 1209-1216.
[62] Borglund D, Ringertz U. Efficient computation of robust futter boundaries using the μ-k method[J]. Journal of Aircraft, 2006, 43(6): 1763-1769.
[63] Wu Z G, Yang C. A new approach for aeroelastic rubost stability analysis[J]. Journal of Aeronautics, 2008, 21(5): 417-422.
[64] Dai Y T, Yang C. Intrusive flutter solutions with stochastic uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2182-2189 (in Chinese). 戴玉婷, 杨超. 考虑随机型不确定性的浸入式颤振求解方法[J]. 航空学报, 2014, 35(8): 2182-2189.
[65] Yang Z C, Gu Y S, Li B. On the continuity of frequency domain μ analysis and complex perturbationmethod for flutter solution[J]. Journal of Vibration and Shock, 2009, 28(5): 55-58 (in Chinese). 杨智春, 谷迎松, 李斌. 频域颤振μ分析的连续性即复摄动方法研究[J]. 振动与冲击, 2009, 28(5): 55-58.
[66] Gu Y S, Yang Z C, Li B. Flutter prediction based on multiplicative perturbation to dynamic pressure[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2311-2315 (in Chinese). 谷迎松, 杨智春, 李斌.采用乘性速压摄动的频域颤振预测方法[J]. 航空学报, 2009, 30(12): 2311-2315.
[67] Yuan H W, Han J L, Huang L L. Model validation and robust flutter analysis of uncertain aeroelastic systems[J]. Journal of Vibration Engineering, 2009, 22(5): 449-455 (in Chinese). 员海玮, 韩景龙, 黄丽丽. 气动弹性系统的模型确认与鲁棒颤振分析[J]. 振动工程学报, 2009, 22(5): 449-455.
[68] Yuan H W. Research on robust flutter analysis and model validation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). 员海玮. 鲁棒颤振分析与模型确认研究[D]. 南京: 南京航空航天大学, 2008.
[69] Lind R. Match-point solution for robust flutter analysis[J]. Journal of Aircraft, 2002, 39(1): 91-99.
[70] Yuan H W, Han J L. Calculation method for robust flutter based on altitude perturbation[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(6): 731-735 (in Chinese). 员海玮, 韩景龙. 飞行高度摄动的鲁棒颤振计算方法[J]. 南京航空航天大学学报, 2007, 39(6): 731-735.
[71] Yuan H W, Han J L. Match point solution for robust flutter analysis in constant-mach prediction[J]. Chinese Journal of Aeronautics, 2008, 21(2): 105-114.
[72] Chuang C H, Shin S J, Kim T. Development of an aircraft worst case flutter prediction with mach variation using robust stability analysis[J]. Journal of Mechanical Science and Technology, 2009, 23(8): 2059-2071.
[73] Chuang C H, Shin S J. Validation of a robust flutter prediction by optimization[J]. International Journal of Aeronautical and Space Sciences, 2012, 13(1): 43-57 .
[74] Baldelli D H, Lind R, Brenner M. Data-based robust match-point solution using describing function method, AIAA-2005-1857[R]. Reston: AIAA, 2005.
[75] Baldelli D H, Lind R, Brenner M. Nonlinear aeroelastic/aeroservoelastic modeling by block-oriented identification[J]. Journal of Guidance, Control and Dynamics, 2005, 28(5): 1056-1064.
[76] Yuan H W, Han J L. Robust stability analysis of nonlinear aeroelastic systems[J]. Journal of Vibration Engineering, 2008, 21(4): 329-334 (in Chinese). 员海玮, 韩景龙. 非线性气动弹性系统的鲁棒稳定性分析[J].振动工程学报, 2008, 21(4): 329-334.
[77] Yun H W, Han J L. Robust flutter analysis of a nonlinear aeroelastic system with parameter uncertainties [J]. Aerospace Science and Technology, 2009, 13(2-3): 139-149.
[78] Song J, Kim T, Song S J. Experimental determination of unsteady aerodynamic coefficients and flutter behavior of a rigid wing[J]. Journal of Fluid and Structures, 2012, 29: 50-61.
[79] Kim T. System identification for coupled fluid-structures: aerodynamics is aeroelasticity minus structure[J]. AIAA Journal, 2011, 49(3): 503-512.
[80] Zhang W W, Yu J J, Quan J G, et al. A new flutter prediction method based on a structural response at sub-critical speed[J]. Advanced in Aeronautical Science and Engineering, 2012, 3(4): 390-396 (in Chinese). 张伟伟, 于俊杰, 全景阁, 等. 一种基于亚临界响应的颤振边界预测新方法[J]. 航空工程进展, 2012, 3(4): 390-396.
[81] Cowan T J, Andrew S, Gupta K K. Accelerating computational fluid dynamics based aeroelastic predictions using system identification[J]. Journal of Aircraft, 2001, 38(1): 81-87.
[82] Zhang W W, Ye Z Y. Reduced-order-model-based flutter analysis at high angle of attack[J]. Journal of Aircraft, 2007, 44(6): 2086-2089.
[83] Zhang W W, Ye Z Y. Effect of control surface on airfoil flutter in transonic flow[J]. Acta Astronautica, 2010, 66(7/8): 999-1007.
[84] Afolabi D, Pidaparti R M V, Yang H T Y. Flutter prediction using eigenvector orientation approach[J]. AIAA Journal, 1998, 36(1): 69-74.
[85] Turevskiy A, Feron E, Paduano J. Flutter boundry prediction using physical modes and experimental data[J]. Journal of Guidance, 1998, 22(1): 168-171.
[86] Ueda T, Iio M, Ikeda T. Flutter prediction using continuous wavelet transform[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2008, 51(174): 275-281. |