[1] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[2] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
[3] Deng X G, Mao M L, Jiang Y, et al. New high-order hybrid cell-edge and cell-node weighted compact nonlinear schemes, AIAA-2011-3857[R]. Reston: AIAA, 2011.
[4] Deng X G, Jiang Y, Mao M L, et al. Developing hybrid cell-edge and cell-node dissipative compact scheme for complex geometry flows[J]. Science China Technological Sciences, 2013, 56(10): 2361-2369.
[5] Vinokur M. An analysis of finite-difference and finite-volume formulations of conservation laws[J]. Journal of Computational Physics, 1989, 81(1): 1-52.
[6] Thomas P D, Lombard C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10): 1030-1037.
[7] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
[8] Nonomura T, Iizuka N, Fujii K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids[J]. Computers & Fluids, 2010, 39(2): 197-214.
[9] Deng X G, Min Y B, Mao M L, et al. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239: 90-111.
[10] Deng X G, Mao M L, Tu G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J]. AIAA Journal, 2010, 48(12): 2840-2851.
[11] Wang X G, Mao M L, Deng X G, et al. P-multigrid method based on the fifth order scheme WCNS-E-5[J]. Acta Aerodynamica Sinica, 2012, 30(1): 1-6 (in Chinese). 王新光, 毛枚良, 邓小刚, 等. 基于5阶精度格式WCNS-E-5的P-multigrid方法研究[J]. 空气动力学学报, 2012, 30(1): 1-6.
[12] Yan Z G, Liu H Y, Mao M L, et al. Convergence property investigation of Gmres method based on high-order dissipative compact scheme[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1181-1192 (in Chinese). 燕振国, 刘化勇, 毛枚良, 等.基于高阶耗散紧致格式的Gmres方法收敛特性研究[J]. 航空学报, 2014, 35(5):1181-1192.
[13] Yan Z G. Investigation of implicit time integration methods with HDCS schemes[D]. Mianyang: China Aerodynamics Research and Development Center, 2013 (in Chinese). 燕振国. 高精度混合线性紧致格式的隐式时间推进方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2013.
[14] Wang G X, Zhang Y L, Li S, et al. A study on massively parallel computation[J]. Computer Engineering & Science, 2012, 34(8): 125-130 (in Chinese). 王光学, 张玉伦, 李松, 等. WCNS高精度并行软件的大规模计算研究[J]. 计算机工程与科学, 2012, 34(8): 125-130.
[15] Deng X G, Wang G X, Tu G H, et al. Applications of high-order weighted compact nonlinear scheme for complex transonic flows, AIAA-2011-0364[R]. Reston: AIAA, 2011.
[16] Wang Y T, Meng D H, Deng X G. High-order numerical study of complex flow over multi-element airfoil[J]. Acta Aerodynamica Sinica, 2012, 31(1): 88-93 (in Chinese). 王运涛, 孟德虹, 邓小刚. 多段翼型高精度数值模拟技术研究[J]. 空气动力学学报, 2012, 31(1): 88-93.
[17] Wang G X, Deng X G, Liu H Y, et al. Application of high-order scheme (WCNS) at high angles of incidence for delta wing[J]. Acta Aerodynamica Sinica, 2012, 30(1):28-33 (in Chinese). 王光学, 邓小刚, 刘化勇, 等. 高阶精度格式WCNS在三角翼大迎角模拟中的应用研究[J]. 空气动力学学报, 2012, 30(1): 28-33.
[18] Zhao Y F. Application studies of high-order accurate schemes to unsteady flows[D]. Changsha: National University of Defense Technology, 2010 (in Chinese). 赵云飞. 高精度格式在非定常流动中的应用研究[D]. 长沙: 国防科学技术大学, 2010.
[19] Zhao X H, Deng X G, Liu H Y, et al. Some applications of WCNS-e-5 on shock-wave/boundary-layer interactions and aerodynamic heating, AIAA-2011-3858[R]. Reston: AIAA, 2011.
[20] Liu X, Deng X G, Mao M L, et al. A high-order accurate scheme WCNS-e-5 applied to body heat transfer distributions[J]. Chinese Journal of Computational Physics, 2005, 22(5): 393-398 (in Chinese). 刘昕, 邓小刚, 毛枚良, 等. 高精度格式WCNS-e-5计算物面热流[J]. 计算物理, 2005, 22(5): 393-398.
[21] Hu X Y, Wang Q, Adams N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23):8952-8965.
[22] Ghosh D, Baeder J D. Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws[J]. SIAM Journal of Scientific Computing, 2012, 34(3): 1678-1706.
[23] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
[24] Castro M, Costa B, Don W S. High order weighted essentially non-oscillatory WENO-z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792.
[25] Tu G H, Deng X G, Mao M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamica Sinica, 2012, 30(6): 709-712 (in Chinese). 涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学学报, 2012, 30(6): 709-712.
[26] Li P, Zhao Q J. CFD calculations on the interaction flowfield and aerodynamic force of tiltrotor/wing in hover[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 361-371 (in Chinese). 李鹏, 招启军. 悬停状态倾转旋翼/机翼干扰流场及气动力的CFD计算[J]. 航空学报, 2014, 35(2): 361-371.
[27] Liu H Y. Development of numerical method and investigation on performances of supersonic ejectors[D]. Mianyang: China Aerodynamics Research and Development Center, 2009 (in Chinese). 刘化勇. 超声速引射器的数值模拟方法及其引射特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2009.
[28] Kleb W L, Weilmuenster K J. A high angle of attack inviscid shuttle orbiter computation[J]. Journal of Spacecraft and Rockets, 1992, 29(5): 746-748. |