| [1] |
洪逸非, 李绪海, 吴凤超, 等. 冲击加载-卸载-再加载条件下Cr-Ni-Mo钢的层裂损伤[J]. 高压物理学报, 2024, 38(5): 117-126.
|
|
HONG Y F, LI X H, WU F C, et al. Spall damage of Cr-Ni-Mo steel under shock-release-reloading conditions[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 117-126 (in Chinese).
|
| [2] |
罗小平, 李绪海, 唐泽明, 等. 冲击应力和脉宽对NbTiZr中熵合金层裂的影响[J]. 高压物理学报, 2024, 38(6): 19-28.
|
|
LUO X P, LI X H, TANG Z M, et al. Effects of shock peak stress and pulse duration on spall damage of NbTiZr medium-entropy alloy[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 19-28 (in Chinese).
|
| [3] |
YANG Y, WANG H, WANG C, et al. Effects of the phase interface on spallation damage nucleation and evolution in dual-phase steel[J]. Steel Research International, 2020, 91(6): 1900583.
|
| [4] |
YANG Y, WANG H, WANG C. Effects of the phase content on spallation damage behavior in dual-phase steel[J]. Journal of Materials Engineering and Performance, 2021, 30(8): 5614-5624.
|
| [5] |
YANG Y, YANG S, WANG H. Effects of the phase content on dynamic damage evolution in Fe50Mn30Co10Cr10 high entropy alloy[J]. Journal of Alloys and Compounds, 2021, 851: 156883.
|
| [6] |
YANG Y, YANG S, WANG H. Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy[J]. Materials Science and Engineering: A, 2021, 802: 140440.
|
| [7] |
YANG Y, HUANG J, WANG H, et al. Grain boundary effects on spall behavior of high purity copper cylinder under sweeping detonation[J]. Journal of Central South University, 2022, 29(4): 1107-1117.
|
| [8] |
辛建婷, 席涛, 范伟, 等. 飞秒激光驱动超高应变率加载下铝材料的层裂特性[J]. 高压物理学报, 2022, 36(3): 60-66.
|
|
XIN J T, XI T, FAN W, et al. The spallation characteristics of Al under ultra-high strain rate loading driven by femtosecond laser[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 60-66 (in Chinese).
|
| [9] |
SUN Y, YANG Y, ZHU Y, et al. Investigation of size effects on spall damage behavior in nanocrystalline aluminum during high impact[J]. Materials Science and Engineering A, 2024, 922: 147663.
|
| [10] |
陈永涛, 洪仁楷, 陈浩玉, 等. 爆轰加载下金属材料的微层裂现象[J].爆炸与冲击, 2017, 37(1): 61-67.
|
|
CHEN Y T, HONG R K, CHEN H Y, et al. Micro-spalling of metal under explosive loading[J]. Explosion And Shock Waves, 2017, 37(1): 61-67 (in Chinese).
|
| [11] |
王路生, 罗龙, 刘浩, 等. 冲击速度对单晶镍层裂行为的影响规律及作用机制[J]. 物理学报, 2024, 73(16): 164601.
|
|
WANG L S, LUO L, LIU H, et al. Law and mechanism of impact velocity on spalling and fracture behavior of single crystal nickel[J]. Acta Physica Sinica, 2024, 73(16): 164601 (in Chinese).
|
| [12] |
杨向阳, 吴楯, 祝有麟, 等. 不同波形加载下[100]单晶铝层裂破坏的分子动力学模拟研究[J]. 高压物理学报, 2024, 38(3): 62-72.
|
|
YANG X Y, WU D, ZHU Y L, et al. Molecular dynamics simulation study on spallation failure of [100] single crystal aluminum under different waveform loadings[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 62-72 (in Chinese).
|
| [13] |
刘涛, 邵博, 雷经发, 等. 固溶温度对TC4钛合金微观组织和动态拉伸力学性能的影响[J]. 稀有金属材料与工程, 2023, 52(12): 4133-4140.
|
|
LIU T, SHAO B, LEI J F, et al. Effect of solid solution temperature on the microstructure and dynamic tensile mechanical properties of TC4 titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(12): 4133-4140 (in Chinese).
|
| [14] |
YANG Y, JIANG Z, WANG C, et al. Effects of the phase interface on initial spallation damage nucleation and evolution in dual phase titanium alloy[J]. Materials Science and Engineering A, 2018, 731: 385-393.
|
| [15] |
HIREL P. Atomsk: A tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015, 197: 212-219.
|
| [16] |
MAURYA S K, NIE J F, ALANKAR A. Atomistic analyses of HCP-FCC transformation and reorientation of Ti in Al-Ti multilayers[J]. Computational Materials Science, 2021, 192: 110329.
|
| [17] |
ZHANG J Y, SUN Z P, ZHANG Y S, et al. Interface dislocation trajectory and long-range strain associated with the migration of semicoherent interfaces[J]. Acta Materialia, 2024, 277: 120167.
|
| [18] |
ZHOU X W, JOHNSON R A, WADLEY H N G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69(14): 144113.
|
| [19] |
ZHAO S, XIONG Y, MA S, et al. Defect accumulation and evolution in refractory multi-principal element alloys[J]. Acta Materialia, 2021, 219: 117233.
|
| [20] |
THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171.
|
| [21] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
|
| [22] |
STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007.
|
| [23] |
STUKOWSKI A, ALBE K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(8): 085001.
|
| [24] |
STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021.
|
| [25] |
杨扬, 蒋志, 胡海波, 等. 相界面对双相钛合金层裂孔洞形核的影响[J]. 矿冶工程, 2018, 38(3): 143-147.
|
|
YANG Y, JIANG Z, HU H B, et al. Effects of phase interface on void nucleation of spallation in dual phase titanium alloy[J]. Mining and Metallurgical Engineering, 2018, 38(3): 143-147 (in Chinese).
|
| [26] |
DOBROSAVLJEVIC V V, ZHANG D, STURHAHN W, et al. Melting and defect transitions in FeO up to pressures of Earth’s core-mantle boundary[J]. Nature Communications, 2023, 14(1): 7336.
|
| [27] |
KULYAMINA E Y, ZITSERMAN V Y, FOKIN L R. Titanium melting curve: Data consistency assessment, problems and achievements[J]. Technical Physics, 2018, 63(3): 369-373.
|
| [28] |
KALITA P, COCHRANE K R, KNUDSON M D, et al. Ti-6Al-4V to over 1.2 TPa: Shock Hugoniot experiments, ab initio calculations, and a broad-range multiphase equation of state[J]. Physical review B, 2023, 107(9): 094101.
|
| [29] |
LI G, WANG Y, WANG K, et al. Shock induced plasticity and phase transition in single crystal lead by molecular dynamics simulations[J]. Journal of Applied Physics, 2019, 126(7): 075902.
|
| [30] |
张凤国, 赵福祺, 刘军, 等. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模[J]. 物理学报, 2022, 71(3): 191-198.
|
|
ZHANG F G, ZHAO F Q, LIU J, et al. Dependence of spall strength on temperature, grain size and strain rate in pure ductile metals[J]. Acta Physica Sinica, 2022, 71(3): 191-198 (in Chinese).
|
| [31] |
TAN J, LU L, LI H Y, et al. Anisotropic deformation and damage of dual-phase Ti-6Al-4V under high strain rate loading[J]. Materials Science and Engineering A, 2019, 742: 532-539.
|
| [32] |
LI P B, LUO G Q, HU J N, et al. Microstructure evolution and spall behavior of 2024Al alloy under ramp wave loading [J]. International Journal of Plasticity, 2025, 191: 104399.
|
| [33] |
陈荣, 马荣, 王峥, 等. 铸态TiZrNbV难熔高熵合金的层裂行为[J]. 含能材料, 2024, 32(4): 387-396.
|
|
CHEN R, MA R, WANG Z, et al. Spalling behavior of as‑cast TiZrNbV refractory high entropy alloy[J]. Chinese Journal of Energetic Materials, 2024, 32(4): 387-396 (in Chinese).
|