1 |
冯一琦, 谢国印, 张璧, 等. 激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报, 2019, 40(12): 423089.
|
|
FENG Y Q, XIE G Y, ZHANG B, et al. Influence of laser power and surface condition on balling behavior in selective laser melting[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 423089 (in Chinese).
|
2 |
REN X Y, LI W W, JING Y J, et al. Dissimilar brazing of NbSS/Nb5Si3 composite to GH5188 superalloy using Ni-based filler alloys[J]. Welding in the World, 2021, 65(9): 1767-1775.
|
3 |
AN Y K, XU X L, HAO Y C, et al. Effect of Co addition on solidification velocity, hardness and refined structure transformation mechanisms of undercooled Ni-Cu-Co alloys[J]. Journal of Alloys and Compounds, 2022, 921: 166150.
|
4 |
孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020, 41(4): 423306.
|
|
KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion in GH4169 nickel based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 423306 (in Chinese).
|
5 |
WEI W, XIAO J C, WANG C F, et al. Hierarchical microstructure and enhanced mechanical properties of SLM-fabricated GH5188 Co-superalloy[J]. Materials Science and Engineering: A, 2022, 831: 142276.
|
6 |
TAKAICHI A, NAKAMOTO T, JOKO N, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21: 67-76.
|
7 |
WEI W, ZHOU Y N, LIU W B, et al. Microstructural characterization, mechanical properties, and corrosion resistance of dental Co-Cr-Mo-W alloys manufactured by selective laser melting[J]. Journal of Materials Engineering and Performance, 2018, 27(10): 5312-5320.
|
8 |
WEI W, ZHOU Y N, SUN Q, et al. Microstructures and mechanical properties of dental Co-Cr-Mo-W alloys fabricated by selective laser melting at different subsequent heat treatment temperatures[J]. Metallurgical and Materials Transactions: A, 2020, 51(6): 3205-3214.
|
9 |
DONG X, ZHOU Y N, SUN Q, et al. Fatigue behavior of biomedical Co-Cr-Mo-W alloy fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2020, 795: 140000.
|
10 |
韩寿波, 张义文, 田象军, 等. 航空航天用高品质3D打印金属粉末的研究与应用[J]. 粉末冶金工业, 2017, 27(6): 44-51.
|
|
HAN S B, ZHANG Y W, TIAN X J, et al. Research and application of high quality 3D printing metal powders for aerospace use[J]. Powder Metallurgy Industry, 2017, 27(6): 44-51 (in Chinese).
|
11 |
GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487.
|
12 |
HE J J, LI D S, JIANG W G, et al. The martensitic transformation and mechanical properties of Ti6Al4V prepared via selective laser melting[J]. Materials, 2019, 12(2): 321.
|
13 |
高嘉洁. 钴合金高压热处理后的组织与性能研究[D]. 秦皇岛: 燕山大学, 2018.
|
|
GAO J J. Study on microstructures and properties of cobalt alloy after high pressure heat treatment[D]. Qinhuangdao: Yanshan University, 2018 (in Chinese).
|
14 |
柳朝阳, 赵备备, 李兰杰, 等. 金属材料3D打印技术研究进展[J]. 粉末冶金工业, 2020, 30(2): 83-89.
|
|
LIU C Y, ZHAO B B, LI L J, et al. Research progress of 3D printing technology for metallic materials[J]. Powder Metallurgy Industry, 2020, 30(2): 83-89 (in Chinese).
|
15 |
YANG Y, CHEN T Y, TAN L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy[J]. Nature, 2021, 595(7866): 245-249.
|
16 |
黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
|
|
HUANG J G, REN S B. Research status and prospect of aluminum alloy manufactured by selective laser melting[J]. Materials Reports, 2021, 35(23): 23142-23152 (in Chinese).
|
17 |
王迪, 欧远辉, 窦文豪, 等. 粉末床激光熔融过程中飞溅行为的研究进展[J]. 中国激光, 2020, 47(9): 9-23.
|
|
WANG D, OU Y H, DOU W H, et al. Research progress on spatter behavior in laser powder bed fusion[J]. Chinese Journal of Lasers, 2020, 47(9): 9-23 (in Chinese).
|
18 |
石文天, 韩玉凡, 刘玉德, 等. 选区激光熔化TC4球化飞溅机理及其试验研究[J]. 表面技术, 2021, 50(11): 75-82.
|
|
SHI W T, HAN Y F, LIU Y D, et al. Mechanism and experimental study of TC4 spheroidization and splash in selective laser melting[J]. Surface Technology, 2021, 50(11): 75-82 (in Chinese).
|
19 |
BASHA S M, BHUYAN M, BASHA M M, et al. Laser polishing of 3D printed metallic components: A review on surface integrity[J]. Materials Today: Proceedings, 2020, 26: 2047-2054.
|
20 |
庞铭, 郎甜甜. 基于多约束条件下激光增材镍基高温合金层的组织和性能[J]. 材料热处理学报, 2020, 41(11): 135-142.
|
|
PANG M, LANG T T. Microstructure and properties of nickel-based superalloy layer prepared by laser additive based on multiple constraints[J]. Transactions of Materials and Heat Treatment, 2020, 41(11): 135-142 (in Chinese).
|
21 |
ZHANG Y F, LI J Z, XU H Y, et al. Dynamic evolution of oxide film on selective laser melted Ti-6Al-4V alloy[J]. Journal of Alloys and Compounds, 2020, 849: 156622.
|
22 |
KUMAR P, SAWANT M S, JAIN N K, et al. Microstructure characterization of Co-Cr-Mo-xTi alloys developed by micro-plasma based additive manufacturing for knee implants[J]. Journal of Materials Research and Technology, 2022, 21: 252-266.
|
23 |
孙晓峰, 宋巍, 梁静静, 等. 激光增材制造高温合金材料与工艺研究进展[J]. 金属学报, 2021, 57(11): 1471-1483.
|
|
SUN X F, SONG W, LIANG J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing[J]. Acta Metallurgica Sinica, 2021, 57(11): 1471-1483 (in Chinese).
|
24 |
ZHANG T L, HUANG Z H, YANG T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing[J]. Science, 2021, 374(6566): 478-482.
|
25 |
屈华鹏, 张宏亮, 冯翰秋, 等. 金属材料增材制造(3D打印)技术的局限性[J]. 热加工工艺, 2018, 47(16): 1-6, 12.
|
|
QU H P, ZHANG H L, FENG H Q, et al. Limitation of additive manufacturing (3D printing) process for metal materials[J]. Hot Working Technology, 2018, 47(16): 1-6, 12 (in Chinese).
|
26 |
ARYSHENSKII E V, ARYSHENSKII V Y, BEGLOV E D, et al. Investigation of subgrain and fine intermetallic participles size impact on grain boundary mobility in aluminum alloys with transitional metal addition[J]. Materials Today: Proceedings, 2019, 19: 2183-2188.
|
27 |
WU J, WANG X Q, WANG W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Materialia, 2016, 117: 311-320.
|
28 |
WANG H Y, WANG L, CUI R, et al. Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool[J]. Journal of Materials Research and Technology, 2020, 9(5): 10401-10410.
|
29 |
WANG X B, YU J Y, LIU J W, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Additive Manufacturing, 2020, 36: 101545.
|
30 |
BANG G B, KIM W R, KIM H K, et al. Effect of process parameters for selective laser melting with SUS316L on mechanical and microstructural properties with variation in chemical composition[J]. Materials & Design, 2021, 197: 109221.
|
31 |
HERMANOVÁ Š, KUBOŇ Z, ČÍŽEK P, et al. Study of material properties and creep behavior of a large block of AISI 316L steel produced by SLM technology[J]. Metals, 2022, 12(8): 1283.
|
32 |
NI C B, ZHU L D, ZHENG Z P, et al. Effect of material anisotropy on ultra-precision machining of Ti-6Al-4V alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2020, 848: 156457.
|