1 |
JOHNSON D L, VAUGHAN W W. The wind environment interactions relative to launch vehicle design[J]. Journal of Aerospace Technology and Management, 2020(12): 1-13.
|
2 |
LESTER H C, TOLEFSON H B. A study of launch-vehicle responses to detailed characteristics of the wind profile[J]. Journal of Applied Meteorology, 1964, 3(5): 491-498.
|
3 |
王建明, 林娜, 张博戎. 某大型低温火箭高空风载荷分析[J]. 导弹与航天运载技术, 2021(5): 137-141.
|
|
WANG J M, LIN N, ZHANG B R. Analysis on flight wind-load for large cryogenic rocket[J]. Missiles and Space Vehicles, 2021(5): 137-141 (in Chinese).
|
4 |
余梦伦. CZ-2E火箭高空风弹道修正[J]. 导弹与航天运载技术, 2001(1): 9-15.
|
|
YU M L. CZ-2E ballistic correction for high altitude wind[J]. Missiles and Space Vehicles, 2001(1): 9-15 (in Chinese).
|
5 |
程胡华, 李娟, 肖云清, 等. 风偏差对火箭最大气动载荷精度的影响[J]. 北京航空航天大学学报, 2021, 47(10): 2034-2042.
|
|
CHENG H H, LI J, XIAO Y Q, et al. Influence of wind deviation on rocket maximum aerodynamic load accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042 (in Chinese).
|
6 |
马林, 昝兴海, 张琦. 考虑随机误差传递的高空风计算方法[J]. 兵器装备工程学报, 2016, 37(8): 173-176.
|
|
MA L, ZAN X H, ZHANG Q. Calculation method of the upper-air wind considering random error transfer[J]. Journal of Ordnance Equipment Engineering, 2016, 37(8): 173-176 (in Chinese).
|
7 |
唐学海, 刘伯阳. 一种基于椭球分层模型的电波折射修正算法[J]. 电子与信息学报, 2015, 37(6): 1507-1512.
|
|
TANG X H, LIU B Y. Radio wave refraction correction algorithm based on ellipsoid stratification atmospheric structure model[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1507-1512 (in Chinese).
|
8 |
FU B S, QI H, XU J T, et al. Attitude control in ascent phase of missile considering actuator non-linearity and wind disturbance[J]. Applied Sciences, 2019, 9(23): 5113.
|
9 |
GAO Z X, FU J. Robust LPV modeling and control of aircraft flying through wind disturbance[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1588-1602.
|
10 |
王景国, 卞韩城, 陈学林, 等. CZ-2F火箭整流罩残骸落点预报方法研究[J]. 载人航天, 2014, 20(5): 457-460.
|
|
WANG J G, BIAN H C, CHEN X L, et al. Research on impact point prediction methods of CZ-2F rocket fairing debris[J]. Manned Spaceflight, 2014, 20(5): 457-460 (in Chinese).
|
11 |
LEGRAND K, PUECHMOREL S, DELAHAYE D, et al. Robust aircraft optimal trajectory in the presence of wind[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(11): 30-38.
|
12 |
HUI Y L, NAN Y, CHEN S D, et al. Dynamic attack zone of air-to-air missile after being launched in random wind field[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1519-1528.
|
13 |
李争学, 贺元军, 张广春, 等. 风干扰引起的飞行器附加攻角和附加侧滑角计算方法[J]. 导弹与航天运载技术, 2016(5): 66-73.
|
|
LI Z X, HE Y J, ZHANG G C, et al. Calculation of the additional attack angle and the additional sideslip angle of craft caused by wind disturbance[J]. Missiles and Space Vehicles, 2016(5): 66-73 (in Chinese).
|
14 |
杨小龙. 飞行器纵向风扰动的辨识方法研究[J]. 系统工程理论与实践, 1996, 16(9): 81-84.
|
|
YANG X L. Longitudinal wind disturbance identification for a flight vehicle[J]. Systems Engineering-Theory & Practice, 1996, 16(9): 81-84 (in Chinese).
|
15 |
孙友, 杨广慧. 大气层内飞行器风速在线辨识方法[J]. 航天控制, 2012, 30(6): 3-6.
|
|
SUN Y, YANG G H. A method of on-line wind identification in the field of guided aerocraft[J]. Aerospace Control, 2012, 30(6): 3-6 (in Chinese).
|
16 |
李洪. 智慧火箭发展路线思考[J]. 宇航总体技术, 2017, 1(1): 1-7.
|
|
LI H. The developing roadmap of intelligent launch vehicle[J]. Astronautical Systems Engineering Technology, 2017, 1(1): 1-7 (in Chinese).
|
17 |
CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Six-DOF spacecraft optimal trajectory planning and real-time attitude control: A deep neural network-based approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 5005-5013.
|
18 |
张荣升, 吴燕生, 秦旭东, 等. 运载火箭推力下降故障下的在线弹道重构方法[J]. 南京航空航天大学学报, 2021, 53(S1): 25-31.
|
|
ZHANG R S, WU Y S, QIN X D, et al. Online trajectory reconstruction of launch vehicle with thrust drop faults[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(S1): 25-31 (in Chinese).
|
19 |
ZHANG R S, ZHANG P Z, QIN X D, et al. Real-time guidance for launch vehicles under thrust drop fault via deep learning[C]∥ 2021 China Automation Congress (CAC). Piscataway: IEEE Press, 2022: 5520-5525.
|
20 |
高晓光, 李新宇, 岳勐琪, 等. 基于深度学习的地空导弹发射区拟合算法[J]. 航空学报, 2019, 40(9): 322858.
|
|
GAO X G, LI X Y, YUE M Q, et al. Fitting algorithm of ground-to-air missile launching area based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 322858 (in Chinese).
|
21 |
ZHANG C Y, JI R P, LIANG Y, et al. LSTM-based boost-phase ballistic missile tracking[C]∥ 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Piscataway: IEEE Press, 2021: 931-936.
|
22 |
KIM J, LIM M C, PARK S S, et al. Ballistic object trajectory and launch point estimation from radar measurements using long-short term memory networks[C]∥ 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA). Piscataway: IEEE Press, 2019: 26-31.
|
23 |
HUANG L M, CHEN W C. Deep learning midcourse guidance for interceptor missile[C]∥2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway: IEEE Press, 2019: 1129-1134.
|
24 |
汪韧, 惠俊鹏, 俞启东, 等. 基于LSTM模型的飞行器智能制导技术研究[J]. 力学学报, 2021, 53(7): 2047-2057.
|
|
WANG R, HUI J P, YU Q D, et al. Research of LSTM model-based intelligent guidance of flight aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2047-2057 (in Chinese).
|
25 |
王因翰, 范世鹏, 吴广, 等. 基于GRU的敌方拦截弹制导律快速辨识方法[J]. 航空学报, 2022, 43(2): 325024.
|
|
WANG Y H, FAN S P, WU G, et al. Fast guidance law identification approach for incoming missile based on GRU network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 325024 (in Chinese).
|
26 |
JIAO R H, PENG K X, DONG J. Remaining useful life prediction for a roller in a hot strip mill based on deep recurrent neural networks[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7): 1345-1354.
|
27 |
康守强, 周月, 王玉静, 等. 基于改进SAE和双向LSTM的滚动轴承RUL预测方法[J]. 自动化学报, 2022, 48(9): 2327-2336.
|
|
KANG S Q, ZHOU Y, WANG Y J, et al. RUL prediction method of a rolling bearing based on improved SAE and Bi-LSTM[J]. Acta Automatica Sinica, 2022, 48(9): 2327-2336 (in Chinese).
|
28 |
任俊超, 刘丁, 万银. 基于混合集成建模的硅单晶直径自适应非线性预测控制[J]. 自动化学报, 2020, 46(5): 1004-1016.
|
|
REN J C, LIU D, WAN Y. Hybrid integrated modeling based adaptive nonlinear predictive control of silicon single crystal diameter[J]. Acta Automatica Sinica, 2020, 46(5): 1004-1016 (in Chinese).
|
29 |
HOU X R, WANG K, ZHONG C, et al. ST-trader: A spatial-temporal deep neural network for modeling stock market movement[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(5): 1015-1024.
|
30 |
SUN L H, YANG B Q, MA J. A trajectory prediction algorithm for HFVs based on LSTM[C]∥ 2021 40th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2021: 7927-7931.
|
31 |
SATIR A S, DEMIR U, SEVER G G, et al. Nonlinear model based guidance with deep learning based target trajectory prediction against aerial agile attack patterns[C]∥ 2021 American Control Conference (ACC). Piscataway: IEEE Press, 2021: 2607-2612.
|
32 |
赵世军, 高太长, 刘涛, 等. 基于北斗一号的高空风探测方法研究[J]. 气象科技, 2012, 40(2): 170-174.
|
|
ZHAO S J, GAO T C, LIU T, et al. Upper wind sounding method based on Beidou-Ⅰ navigation system[J]. Meteorological Science and Technology, 2012, 40(2): 170-174 (in Chinese).
|
33 |
徐延万. 液体弹道导弹与运载火箭系列控制系统(上)[M]. 北京: 中国宇航出版社, 1989: 147-149.
|
|
XU Y W. Control system design of liquid propellant ballistic missile and launch vehicle(I) [M]. Beijing: China Astronautic Publishing House, 1989: 147-149 (in Chinese).
|