1 |
梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4): 409-424.
|
|
LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4): 409-424 (in Chinese).
|
2 |
徐世南, 吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹, 2019(4): 48-55.
|
|
XU S N, WU C S. Research progress of thermal protection structure of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2019(4): 48-55 (in Chinese).
|
3 |
孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7): 1759-1775.
|
|
MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1759-1775 (in Chinese).
|
4 |
DURRANT R, DUSSY S, CROWLE H, et al. SiREUS: Status of the European MEMS rate sensor[C]∥ AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008: 6992.
|
5 |
WRIGHT N G, HORSFALL A B. SiC sensors: A review[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6345-6354.
|
6 |
COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7): 1805-1837.
|
7 |
RICOHERMOSO E III, ROSENBURG F, KLUG F, et al. Piezoresistive carbon-containing ceramic nanocomposites—A review[J]. Open Ceramics, 2021, 5: 100057.
|
8 |
SUJITH R, JOTHI S, ZIMMERMANN A, et al. Mechanical behaviour of polymer derived ceramics—A review[J]. International Materials Reviews, 2021, 66(6): 426-449.
|
9 |
National Energy Technology Laboratory. NETL collaboration produces smart sensors to monitor ultra-high temperature energy systems[EB/OL]. (2019-02-19) [2022-06-30]. .
|
10 |
RYU H Y, WANG Q, RAJ R. Ultrahigh-temperature semiconductors made from polymer-derived ceramics[J]. Journal of the American Ceramic Society, 2010, 97(4):1668-1676.
|
11 |
ZHAO R, SHAO G, CAO Y J, et al. Temperature sensor made of polymer-derived ceramics for high-temperature applications[J]. Sensors and Actuators A: Physical, 2014, 219: 58-64.
|
12 |
JUNG S, SEO D, LOMBARDO S J, et al. Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers[J]. Sensors and Actuators A: Physical, 2012, 175: 53-59.
|
13 |
CUI Z F, LI X, CHEN G C, et al. Thin-film temperature sensor made from particle-filled polymer-derived ceramics pyrolyzed in vacuum[J]. Journal of the European Ceramic Society, 2022, 42(6): 2735-2742.
|
14 |
MONTEVERDE F, SAVINO R. Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions[J]. Journal of the European Ceramic Society, 2007, 27(16): 4797-4805.
|
15 |
GOPINATH N K, JAGADEESH G, BASU B. Shock wave‐material interaction in ZrB2-SiC based ultra high temperature ceramics for hypersonic applications[J]. Journal of the American Ceramic Society, 2019, 102(11): 6925-6938.
|
16 |
HAUG J, LAMPARTER P, WEINMANN M, et al. Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si-(B)-C-N system. 2. Si-B-C-N ceramics[J]. Chemistry of Materials, 2004, 16(1): 83-92.
|
17 |
PRASAD R M, MERA G, MORITA K, et al. Thermal decomposition of carbon-rich polymer-derived silicon carbonitrides leading to ceramics with high specific surface area and tunable micro- and mesoporosity[J]. Journal of the European Ceramic Society, 2012, 32(2): 477-484.
|
18 |
KLEEBE H J, SUTTOR D, MÜLLER H, et al. Decomposition-crystallization of polymer-derived Si-C-N ceramics[J]. Journal of the American Ceramic Society, 2005, 81(11): 2971-2977.
|
19 |
XU T H, MA Q S, CHEN Z H. The effect of environment pressure on high temperature stability of silicon oxycarbide glasses derived from polysiloxane[J]. Materials Letters, 2011, 65(11): 1538-1541.
|
20 |
NIU J H, MENG S H, JIN H, et al. Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere[J]. Journal of the European Ceramic Society, 2019, 39(15): 4535-4544.
|
21 |
CHEN Y H, YANG X P, CAO Y J, et al. Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics[J]. Acta Materialia, 2014, 72: 22-31.
|
22 |
FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107.
|