航空学报 > 2023, Vol. 44 Issue (8): 327115-327115   doi: 10.7527/S1000-6893.2022.27115

基于多策略GWO算法的不确定环境下异构多无人机任务分配

张安, 杨咪(), 毕文豪, 张百川, 王雨农   

  1. 西北工业大学 航空学院,西安 710072
  • 收稿日期:2022-03-07 修回日期:2022-03-29 接受日期:2022-04-28 出版日期:2023-04-25 发布日期:2022-05-09
  • 通讯作者: 杨咪 E-mail:yangmi@mail.nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(62073267);航空科学基金(201905053001);西北工业大学新兴交叉学科方向项目专项资金

Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO

An ZHANG, Mi YANG(), Wenhao BI, Baichuan ZHANG, Yunong WANG   

  1. School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2022-03-07 Revised:2022-03-29 Accepted:2022-04-28 Online:2023-04-25 Published:2022-05-09
  • Contact: Mi YANG E-mail:yangmi@mail.nwpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62073267);Aeronautical Science Foundation of China(201905053001);Research Funds for Interdisciplinary Subject (NWPU)

摘要:

针对具有复杂约束的异构多无人机对地目标侦察打击任务分配问题,考虑不确定的任务执行时长、目标消失时间和无人机巡航速度等不确定因素对任务分配结果的影响,基于模糊可信性理论构建以最小化总成本为优化目标的异构多无人机任务分配的模糊机会约束规划模型,并提出一种多策略融合的灰狼优化算法(IMSGWO),通过引入自适应控制参数调整策略、自适应惯性权重策略、最优学习策略与跳出局部最优策略,在增强种群多样性的同时,提高算法的搜索能力。数值分析结果表明:所提算法能够有效求解不确定环境下的异构多无人机任务分配问题。

关键词: 多无人机, 异构无人机, 任务分配, 不确定环境, 灰狼优化算法

Abstract:

To solve the problem of task allocation in reconnaissance and attack on ground targets by multi-UAVs with complex constraints, the impact of multiple uncertain factors such as uncertain task execution time, target disappearance time and UAV cruise speed on the task allocation results is considered. A fuzzy chance constrained programming model for multi-UAV task allocation is constructed based on the fuzzy credibility theory, with minimization of the total cost as the optimization goal. In addition, a Multi-Strategy Integrated Grey Wolf Optimization (IMSGWO) algorithm is proposed. By introducing the adaptive control parameter adjustment strategy, adaptive inertia weight strategy, optimal learning strategy and jumping out of local optimal strategy, the search ability of the algorithm is improved while enhancing population diversity. Numerical results show that the proposed algorithm can effectively solve the problem of multi-UAV task allocation in uncertain environment.

Key words: multiple unmanned aerial vehicles, heterogeneous unmanned aerial vehicles, task allocation, uncertain environment, grey wolf optimization algorithm

中图分类号: