1 |
呼忠权, 华长春, 张柳柳. 具有时变扰动的四旋翼无人机有限时间预定性能控制[J]. 控制与决策, 2022, 37(12): 3215-3222.
|
|
HU Z Q, HUA C C, ZHANG L L. Finite time prescribed performance control of quadrotor UAVs with time varying disturbances[J]. Control and Decision, 2022, 37(12): 3215-3222 (in Chinese).
|
2 |
曹远宁. 四旋翼无人机的运动目标识别与跟踪[D]. 沈阳: 东北大学, 2015.
|
|
CAO Y N. Moving target recognition and tracking for quadrotor UAV[D]. Shenyang: Northeastern University, 2015 (in Chinese).
|
3 |
HOU Y Q, LIANG X L, HE L L, et al. Time-coordinated control for unmanned aerial vehicle swarm cooperative attack on ground-moving target[J]. IEEE Access, 2019, 7: 106931-106940.
|
4 |
RAMEZANI DOORAKI A, LEE D J. An innovative bio-inspired flight controller for quad-rotor drones: Quad-rotor drone learning to fly using reinforcement learning[J]. Robotics and Autonomous Systems, 2021, 135: 103671.
|
5 |
马良, 穆朝絮, 杨万扣, 等. 四旋翼无人机目标跟踪系统设计[J]. 控制工程, 2015, 22(6): 1076-1081.
|
|
MA L, MU C X, YANG W K, et al. Design of target tracking system for quad-rotor UAV[J]. Control Engineering of China, 2015, 22(6): 1076-1081 (in Chinese).
|
6 |
MEHMOOD Y, ASLAM J, ULLAH N, et al. Adaptive robust trajectory tracking control of multiple quad-rotor UAVs with parametric uncertainties and disturbances[J]. Sensors, 2021, 21(7): 2401.
|
7 |
KHANKALANTARY S, BADRI P, MOHAMMADKHANI H. Designing a hierarchical model-predictive controller for tracking an unknown ground moving target using a 6-DOF quad-rotor[J]. International Journal of Dynamics and Control, 2021, 9(3): 985-999.
|
8 |
GUO J, YAN G F, LIN Z Y. Local control strategy for moving-target-enclosing under dynamically changing network topology[J]. Systems and Control Letters, 2010, 59(10): 654-661.
|
9 |
PENG X H, GUO K X, LI X, et al. Cooperative moving-target enclosing control for multiple nonholonomic vehicles using feedback linearization approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(8): 4929-4935.
|
10 |
KANG B, MIAO Y, LIU F, et al. A second-order sliding mode controller of quad-rotor UAV based on PID sliding mode surface with unbalanced load[J].Journal of Systems Science and Complexity, 2021, 34(2): 520-536.
|
11 |
ZHANG M, BORJA P, ORTEGA R, et al. PID passivity-based control of port-Hamiltonian systems[J]. IEEE Transactions on Automatic Control, 2018, 63(4): 1032-1044.
|
12 |
CAO Z B, ZHAO J. Passivity-based event-triggered control for a class of switched nonlinear systems[J]. ISA Transactions, 2022, 125: 50-59.
|
13 |
WANG J L, ZHANG X X, WU H N, et al. Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights[J]. IEEE Transactions on Cybernetics, 2019, 49(9): 3385-3397.
|
14 |
GUERRERO M E, MERCADO D A, LOZANO R, et al. Passivity based control for a quadrotor UAV transporting a cable-suspended payload with minimum swing[C]∥2015 54th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 6718-6723.
|
15 |
HA C S, ZUO Z Y, CHOI F B, et al. Passivity-based adaptive backstepping control of quadrotor-type UAVs[J]. Robotics and Autonomous Systems, 2014, 62(9): 1305-1315.
|
16 |
WANG X D, FEI Z Y, YU J Y, et al. Passivity-based event-triggered fault tolerant control for VTOL with actuator failure and parameter uncertainties[J]. International Journal of Systems Science, 2019, 50(4): 817-828.
|
17 |
CHEN S F, YANG Z H, LIU Z T, et al. An improved artificial potential field based path planning algorithm for unmanned aerial vehicle in dynamic environments[C]∥2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). Piscataway: IEEE Press, 2018: 591-596.
|
18 |
张宏宏, 甘旭升, 毛亿, 等. 无人机避障算法综述[J]. 航空兵器, 2021, 28(5): 53-63.
|
|
ZHANG H H, GAN X S, MAO Y, et al. Review of UAV obstacle avoidance algorithms[J]. Aero Weaponry, 2021, 28(5): 53-63 (in Chinese).
|
19 |
LI K Y, LU Y G, ZHANG Y C. Dynamic obstacle avoidance path planning of UAV Based on improved APF[C]∥2020 5th International Conference on Communication, Image and Signal Processing (CCISP). Piscataway: IEEE Press, 2020: 159-163.
|
20 |
YAO Q F, ZHENG Z Y, QI L, et al. Path planning method with improved artificial potential field—a reinforcement learning perspective[J]. IEEE Access, 2020, 8: 135513-135523.
|
21 |
MANCINI M, BLOISE N, CAPELLO E, et al. Sliding mode control techniques and artificial potential field for dynamic collision avoidance in rendezvous maneuvers[J]. IEEE Control Systems Letters, 2020, 4(2): 313-318.
|
22 |
LI Q, YUAN J P, ZHANG B, et al. Artificial potential field based robust adaptive control for spacecraft rendezvous and docking under motion constraint[J]. ISA Transactions, 2019, 95: 173-184.
|
23 |
张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报, 2019, 40(3): 322493.
|
|
ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322493 (in Chinese).
|
24 |
CONG Y R, FENG Z G, SONG H W, et al. Containment control of singular heterogeneous multi-agent systems[J]. Journal of the Franklin Institute, 2018, 355(11): 4629-4643.
|
25 |
KHALIL H K. Nonlinear control[M]. Boston: Pearson, 2015.
|