[1] LI X Y, LIU F Y, WEN P C, et al. Software and hardware cooperative acceleration technology for CNN[J]. Aero Weaponry, 2021, 28(3): 99-104 (in Chinese). 李欣瑶, 刘飞阳, 文鹏程, 等. 卷积神经网络的软硬件协同加速技术[J]. 航空兵器, 2021, 28(3): 99-104. [2] CHEN J. The operational characteristics of drone swarm and the conception of countermeasure system[J]. Radio Engineering, 2020, 50(7): 586-591 (in Chinese). 陈镜. 无人机蜂群作战特点和对抗体系设想[J]. 无线电工程, 2020, 50(7): 586-591. [3] SARANOVIC D, PAVLOVSKI M, POWER W, et al. Interception of automated adversarial drone swarms in partially observed environments[J]. Integrated Computer-Aided Engineering, 2021, 28(4): 335-348. [4] [5] YANG Z Y, WANG Y L, LAI C L. Research on the development status and trend of UAV cluster operation[J]. Aerodynamic Missile Journal, 2019(5): 34-38 (in Chinese). 杨中英, 王毓龙, 赖传龙. 无人机蜂群作战发展现状及趋势研究[J]. 飞航导弹, 2019(5): 34-38. [6] DONG Y, GAO M, ZHANG Y, et al. Research progress and development trend of U.S. military cluster UAV [J]. Aerodynamic Missile Journal, 2020(9): 37-42 (in Chinese). 董宇, 高敏, 张悦, 等. 美军蜂群无人机研究进展及发展趋势[J]. 飞航导弹, 2020(9): 37-42. [7] [8] WANG T, LI L, JIANG Q. OFFensive swarm-enabled tactics program promotes the development of unmanned swarm capability[J]. Tactical Missile Technology, 2020(1): 33-38, 56 (in Chinese). 王彤, 李磊, 蒋琪. “进攻性蜂群使能战术”项目推进无人蜂群能力发展分析[J]. 战术导弹技术, 2020(1): 33-38, 56. [9] YUAN C, DONG X L. Development of DARPA's "offensive swarm tactics" project [J] International aviation, 2018 (5): 3 (in Chinese). 袁成, 董晓林. DARPA“进攻性蜂群战术”项目的发展[J]. 国际航空, 2018(5):3. [10] LI L, WANG T, HU Q L, et al. White force network in DARPA CODE program[J]. Aerospace Electronic Warfare, 2018, 34(6): 54-59 (in Chinese). 李磊, 王彤, 胡勤莲, 等. DARPA拒止环境中协同作战项目白军网络研究[J]. 航天电子对抗, 2018, 34(6): 54-59. [11] LI L, WANG T, JIANG Q. DARPA CODE program promotes the development of distributed collaborative operations[J]. Unmanned Systems Technology, 2018, 1(3): 59-66 (in Chinese). 李磊, 王彤, 蒋琪. 美国CODE项目推进分布式协同作战发展[J]. 无人系统技术, 2018, 1(3): 59-66. [12] KANG G W, LI Q. On the development of American air to ground guided ammunition from the "golden account Khanate" project [J] International aviation, 2020 (7): 4 (in Chinese). 康国卫, 李清. 从“金帐汗国”项目管窥美军空地制导弹药发展[J]. 国际航空, 2020(7):4. [13] HUANG L. Summary of the development status of the U.S. elf UAV group project [J]. Aerodynamic Missile Journal, 2018(7): 44-47 (in Chinese). 黄雷. 美军小精灵无人机群项目发展现状综述[J]. 飞航导弹, 2018(7): 44-47. [14] YUAN C. DARPA’s "elf" project [J]. Ordnance Knowledge, 2016(9): 37-39 (in Chinese). 袁成. 美国国防高级研究计划局“小精灵”项目[J]. 兵器知识, 2016(9): 37-39. [15] SONG Y R, SHEN C, LI D B. Research progress of distributed low-cost UAV cluster in the United States [J]. Aerodynamic Missile Journal, 2016(8): 17-22 (in Chinese). 宋怡然, 申超, 李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹, 2016(8): 17-22. [16] Anonymity. Us test small UAV cluster [J] Ordnance knowledge, 2017 (5): 1 (in Chinese). 佚名. 美国试验小型无人机集群[J]. 兵器知识, 2017(5):1. [17] WANG L F. The U.S. Naval Research Laboratory shows a variety of UAV innovative technologies [J]. Defense Point, 2017(Sup 1): 117 (in Chinese). 王璐菲. 美国海军研究实验室展示多种无人机创新科技[J]. 防务视点, 2017(S1): 117. [18] CHEN W, LIU J J, GUO H Z, et al. Toward robust and intelligent drone swarm: challenges and future directions[J]. IEEE Network, 2020, 34(4): 278-283 (in Chinese). [19] JIANG J X. Threats and countermeatures of unmanned aerial vehicle swarm to aerial defense[J]. National Defense Technology, 2019, 40(6): 108-113 (in Chinese). 姜俊新. 无人机蜂群对防空作战的威胁与对策[J]. 国防科技, 2019, 40(6): 108-113. [20] JIE C, MIAO Z, YE T T. Research on the development of American active anti UAV system [J]. Aerodynamic Missile Journal, 2020(12): 36-42 (in Chinese). 介冲, 苗壮, 叶婷婷. 美军现役反无人机系统发展研究[J]. 飞航导弹, 2020(12): 36-42. [21] YU L, WEI P, MA Z L, et al. Analysis on the development of foreign military anti cluster UAV technology [J]. Aerodynamic Missile Journal, 2017(12): 26-30 (in Chinese). 于力, 魏平, 马振利, 等. 外军反蜂群无人机技术发展分析[J]. 飞航导弹, 2017(12): 26-30. [22] HU J, CHEN H, FU Y, et al. Current situation of UAV cluster technology and anti cluster countermeasures [J]. Aerodynamic Missile Journal, 2020(9): 32-36 (in Chinese). 胡杰, 陈桦, 付宇, 等. 无人机蜂群技术现状及反蜂群应对策略[J]. 飞航导弹, 2020(9): 32-36. [23] ZHANG J Y. American Loma company displays new laser weapons [J]. China Scitechnology Business, 2019(12): 107 (in Chinese). 张嘉毅. 美国洛马公司展示新型激光武器[J]. 科技中国, 2019(12): 107. [24] HU Q L, JIAO S J, LIU J H, et al. Research on anti US UAV swarm warfare [J] Cruise missile, 2021 (12): 5 (in Chinese). 胡乔林, 焦士俊, 刘剑豪,等. 反美军无人机蜂群作战问题研究[J]. 飞航导弹, 2021(12):5. [25] LIU L, WANG T. The operational advantages and challenges of cooperative electronic attack by UAV cluster[J]. National Defense Science & Technology, 2016, 37(6): 126-130, 134 (in Chinese). 刘丽, 汪涛. 无人机集群协同电子攻击的作战优势及挑战[J]. 国防科技, 2016, 37(6): 126-130, 134. [26] XU D M, ZHANG H W. Overview of radar LSS target detection technology[J]. Modern Defence Technology, 2018, 46(1): 148-155 (in Chinese). 许道明, 张宏伟. 雷达低慢小目标检测技术综述[J]. 现代防御技术, 2018, 46(1): 148-155. [27] [28] CHEN X L, GUAN J, HUANG Y, et al. Radar refined processing and its applications for low-observable moving target[J]. Science & Technology Review, 2017, 35(20): 19-27 (in Chinese). 陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19-27. [29] YANG Y H, SUN J M, YU S K. Aircraft target recognition based on convolutional neural network with transfer learning[J]. Modern Radar, 2019, 41(12): 35-39 (in Chinese). 杨予昊, 孙晶明, 虞盛康. 基于卷积神经网络迁移学习的飞机目标识别[J]. 现代雷达, 2019, 41(12): 35-39. [30] CHEN W S, LIU J, CHEN X L, et al. Non-cooperative UAV target recognition in low-altitude airspace based on motion model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 687-694 (in Chinese). 陈唯实, 刘佳, 陈小龙, 等. 基于运动模型的低空非合作无人机目标识别[J]. 北京航空航天大学学报, 2019, 45(4): 687-694. [31] [32] [33] BISIO I, GARIBOTTO C, LAVAGETTO F, et al. Unauthorized amateur UAV detection based on WiFi statistical fingerprint analysis[J]. IEEE Communications Magazine, 2018, 56(4): 106-111. [34] [35] KERSTA L G. Voiceprint identification[J]. Nature, 1962, 196(4861): 1253-1257. [36] SHI L, AHMAD I, HE Y J, et al. Hidden Markov model based drone sound recognition using MFCC technique in practical noisy environments[J]. Journal of Communications and Networks, 2018, 20(5): 509-518. [37] [38] [39] [40] NIU S S, ZHOU H W, ZHU J W, et al. Infrared dim-small multi-target detection technology based on YOLO intelligent network[J]. Aerospace Shanghai, 2019, 36(5): 28-34 (in Chinese). 钮赛赛, 周华伟, 朱婧文, 等. 基于YOLO智能网络的红外弱小多目标检测技术[J]. 上海航天, 2019, 36(5): 28-34. [41] LYU P Y, SUN S L, LIN C Q, et al. Space moving target detection and tracking method in complex background[J]. Infrared Physics & Technology, 2018, 91: 107-118. [42] SUN X L, LIU X L, TANG Z X, et al. Real-time visual enhancement for infrared small dim targets in video[J]. Infrared Physics & Technology, 2017, 83: 217-226. [43] CHEN N, FAN Y H, BAI B. Moving object detection algorithm integrating ViBe with frame difference method[J]. Journal of Zhejiang University of Science and Technology, 2020, 32(1): 32-37 (in Chinese). 陈宁, 范英豪, 白冰. 融合帧间差分法和ViBe的运动目标检测算法[J]. 浙江科技学院学报, 2020, 32(1): 32-37. [44] [45] MA Q, ZHU B, ZHANG H W, et al. Low-altitude UAV detection and recognition method based on optimized YOLOv3[J]. Laser & Optoelectronics Progress, 2019, 56(20): 201006 (in Chinese). 马旗, 朱斌, 张宏伟, 等. 基于优化YOLOv3的低空无人机检测识别方法[J]. 激光与光电子学进展, 2019, 56(20): 201006. [46] LIU Y C, LIAO L C, ZHANG J, et al. Unmanned aerial vehicle detection based on trajectory and pattern recognition[J]. Computer Engineering, 2020, 46(12): 283-289, 298 (in Chinese). 刘宜成, 廖鹭川, 张劲, 等. 基于轨迹和形态识别的无人机检测方法[J]. 计算机工程, 2020, 46(12): 283-289, 298. [47] LIU C B. Research on dynamic weapon target assignment problem with a kind of memetic algorithm[J]. Ship Electronic Engineering, 2012, 32(10): 34-37 (in Chinese). 刘传波. 基于Memetic算法的动态武器目标分配问题研究[J]. 舰船电子工程, 2012, 32(10): 34-37. [48] WANG L, NI M F, YANG K S, et al. Direct comparison-improved combined chaotic genetic algorithm for solving weapon-target assignment problem[J]. Journal of System Simulation, 2014, 26(1): 125-131 (in Chinese). WANG L, NI M F, YANG K S, et al. Direct com parison-improved combined chaotic genetic algorithm for solving weapon-target assignment problem[J]. 系统仿真学报, 2014, 26(1): 125-131. [49] CHEN S, HU T. Weapon-target assignment with multi-objective non-dominated set ranking genetic algorithm[J]. Ship Electronic Engineering, 2015, 35(7): 54-57, 100 (in Chinese). 陈思, 胡涛. 基于多目标优化遗传算法的武器-目标分配[J]. 舰船电子工程, 2015, 35(7): 54-57, 100. [50] YAN Y D. An improved genetic algorithm for solving weapon target assignment problems[J]. Digital Technology & Application, 2018, 36(10): 128-131 (in Chinese). 闫玉铎. 应用改进遗传算法解决武器目标分配问题[J]. 数字技术与应用, 2018, 36(10): 128-131. [51] CHANG T Q, BAI F, WANG Q Z. A niche-based improved genetic algorithm for tank element weapon-target assignment problem solving[J]. Journal of Academy of Armored Force Engineering, 2012, 26(1): 44-49 (in Chinese). 常天庆, 白帆, 王钦钊. 解坦克分队武器-目标分配问题的小生境遗传算法[J]. 装甲兵工程学院学报, 2012, 26(1): 44-49. [52] XIONG Y. Application of improved ACO in WTA of air defense[J]. Computer & Digital Engineering, 2014, 42(3): 399-402, 411 (in Chinese). 熊瑜. 改进蚁群算法在武器目标分配中的应用研究[J]. 计算机与数字工程, 2014, 42(3): 399-402, 411. [53] GAO S, YANG J Y. Solving weapon-target assignment problem by particle swarm optimization algorithm[J]. Systems Engineering and Electronics, 2005, 27(7): 1250-1252, 1259 (in Chinese). 高尚, 杨静宇. 武器-目标分配问题的粒子群优化算法[J]. 系统工程与电子技术, 2005, 27(7): 1250-1252, 1259. [54] WANG W Q, YAO M, ZHAO M. Research on cooperative attack decision of unmanned aerial vehicles for air combat[J]. Command Control & Simulation, 2014, 36(2): 9-13 (in Chinese). 王网琴, 姚敏, 赵敏. 多无人机协同攻击目标决策[J]. 指挥控制与仿真, 2014, 36(2): 9-13. [55] FU M, CHENG H, WANG S G. Study on the weapon target assignment problem by using hybrid genetic algorithm[J]. Journal of Henan University of Engineering (Natural Science Edition), 2018, 30(1): 53-56, 60 (in Chinese). 傅勉, 程浩, 王世贵. 用混合遗传算法求解武器目标分配问题[J]. 河南工程学院学报(自然科学版), 2018:30(1): 53-56, 60. [56] HU Y A, LIU Z, SONG R H, et al. Hill-climbing and pattern ant colony hybridBayesian optimizat ion algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(5): 90-95 (in Chinese). 胡云安, 刘振, 宋瑞华, 等. 爬山法与模式蚁群法混合的贝叶斯优化算法[J]. 华中科技大学学报(自然科学版), 2013, 41(5): 90-95. [57] HUANG G R, LI P H, DING J X, et al. Research on weapon-target assignment model and algorithm based on the fuzzy optimization theory[J]. Fire Control & Command Control, 2013, 38(1): 56-60 (in Chinese). 黄国锐, 李朋辉, 丁俊香, 等. 模糊优化理论的武器-目标分配模型及求解算法[J]. 火力与指挥控制, 2013, 38(1): 56-60. [58] [59] HERNANDEZ-LEAL P, ZHAN Y S, TAYLOR M E, et al. An exploration strategy for non-stationary opponents[J]. Autonomous Agents and Multi-Agent Systems, 2017, 31(5): 971-1002. [60] COLLINS A. Adversarial reasoning: Computational approaches to reading the opponent’s mind (Hardcover)[J]. Journal of the Operational Research Society, 2010. [61] GUW X,LIU Y.Adversarial Planning and Respons-e[M].The Science Publishing Company,2016. [62] ONTA?óN S, SYNNAEVE G, URIARTE A, et al. A survey of real-time strategy game AI research and competition in StarCraft[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2013,5(4): 293-311. [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] |