林京1, 张博瑶1, 张大义2, 陈敏2
收稿日期:
2021-10-26
修回日期:
2021-12-03
出版日期:
2022-08-15
发布日期:
2021-12-01
通讯作者:
林京,E-mail:linjing@buaa.edu.cn
E-mail:linjing@buaa.edu.cn
基金资助:
LIN Jing1, ZHANG Boyao1, ZHANG Dayi2, CHEN Min2
Received:
2021-10-26
Revised:
2021-12-03
Online:
2022-08-15
Published:
2021-12-01
Supported by:
摘要: 航空燃气涡轮发动机技术是一个国家工业水平和科技实力的综合体现,故障诊断技术是航空发动机安全、经济运行的重要保障,也是衡量其先进性的重要指标之一。由于航空发动机结构复杂、系统集成度高、服役环境恶劣、工作状态多变,同时存在在线测试条件有限、诊断信息量不易保障等制约,故障诊断面临较多挑战。本文从气路分析与性能评价、机械系统故障诊断和多参量信息融合3个方面对国内外航空发动机故障诊断技术进行梳理,剖析存在的主要问题和挑战,并对未来发展趋势进行展望。
中图分类号:
林京, 张博瑶, 张大义, 陈敏. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.
LIN Jing, ZHANG Boyao, ZHANG Dayi, CHEN Min. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 626565.
[1] HANACHI H, MECHEFSKE C, LIU J, et al. Performance-based gas turbine health monitoring, diagnostics, and prognostics: A survey[J]. IEEE Transactions on Reliability, 2018, 67(3): 1340-1363. [2] VOLPONI A J. Gas turbine engine health management: past, present, and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 051201. [3] IATA. Airline maintenance cost executive commentary: FY2019[R]. Montreal: International Air Transport Association, 2020. [4] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104(in Chinese). [5] 苗强, 蒋京, 张恒, 等. 工业大数据背景下的航空智能发动机: 机遇与挑战[J]. 仪器仪表学报, 2019, 40(7): 1-12. MIAO Q, JIANG J, ZHANG H, et al. Development of aviation intelligent engine under industrial big data: Chances and challenges[J]. Chinese Journal of Scientific Instrument, 2019, 40(7): 1-12(in Chinese). [6] LI Y G. Performance-analysis-based gas turbine diagnostics: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(5): 363-377. [7] GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[M]. Cham: Springer International Publishing, 2017: 85-113. [8] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2012: 1818. [9] 郝英, 孙健国, 白杰. 航空燃气涡轮发动机气路故障诊断现状与展望[J]. 航空动力学报, 2003, 18(6): 753-760. HAO Y, SUN J G, BAI J. State-of-the-art and prospect of aircraft engine fault diagnosis using gas path parameters[J]. Journal of Aerospace Power, 2003, 18(6): 753-760(in Chinese). [10] 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522. HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522(in Chinese). [11] TAHAN M, TSOUTSANIS E, MUHAMMAD M, et al. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review[J]. Applied Energy, 2017, 198: 122-144. [12] URBAN L A. Gas path analysis applied to turbine engine condition monitoring[J]. Journal of Aircraft, 1973, 10(7): 400-406. [13] URBAN L A. Parameter selection for multiple fault diagnostics of gas turbine engines[J]. Journal of Engineering for Power, 1975, 97(2): 225-230. [14] MARINAI L, PROBERT D, SINGH R. Prospects for aero gas-turbine diagnostics: A review[J]. Applied Energy, 2004, 79(1): 109-126. [15] ARETAKIS N, MATHIOUDAKIS K, STAMATIS A. Nonlinear engine component fault diagnosis from a limited number of measurements using a combinatorial approach[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3): 642-650. [16] 陈大光. 燃气涡轮发动机的状态监控与故障诊断[J]. 航空学报, 1989, 10(6): 225-236. CHEN D G. Gas turbine engine condition monitoring and fault diagnostics[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(6): 225-236(in Chinese). [17] 陈大光, 韩凤学, 唐耿林. 多状态气路分析法诊断发动机故障的分析[J]. 航空动力学报, 1994, 9(4): 349-352. CHEN D G, HAN F X, TANG G L. Analysis of multistate gas path analytical method in fault diagnosis for aeroengine[J]. Journal of Aerospace Power, 1994, 9(4): 349-352(in Chinese). [18] 张津. 民用航空发动机状态监视和故障诊断系统研究[J]. 航空动力学报, 1994, 9(4): 339-343. ZHANG J. A condition monitoring and fault diagnosis system for civil aeroengines[J]. Journal of Aerospace Power, 1994, 9(4): 339-343(in Chinese). [19] 朱之丽, 孟凡涛. 模型辨识法诊断发动机故障的分析[J]. 北京航空航天大学学报, 2003, 29(5): 398-401. ZHU Z L, MENG F T. Aircraft engine fault diagnosis research using model identification based method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5): 398-401(in Chinese). [20] 范作民, 孙春林, 林兆福. 发动机故障诊断的主因子模型[J]. 航空学报, 1993, 14(12): 588-595. FAN Z M, SUN C L, LIN Z F. Primary factor model for jet engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(12): 588-595(in Chinese). [21] 孙祥逢, 陈玉春, 胡福. 发动机故障诊断主因子模型的测量参数选择[J]. 航空动力学报, 2010, 25(1): 129-135. SUN X F, CHEN Y C, HU F. Research on selection of measurement parameters of engine fault diagnosis based on primary factor model[J]. Journal of Aerospace Power, 2010, 25(1): 129-135(in Chinese). [22] BROTHERTON T, VOLPONI A, LUPPOLD R, et al. eSTORM: Enhanced self tuning on-board real-time engine model[C]//2003 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2003: 3075-3086. [23] BORGUET S, DEWALLEF P, LÉONARD O. A way to deal with model-plant mismatch for a reliable diagnosis in transient operation[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. NewYork: American Society of Mechanical Engineers, 2006: 593-602. [24] POURBABAEE B, MESKIN N, KHORASANI K. Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1184-1200. [25] LU F, JU H F, HUANG J Q. An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring[J]. Aerospace Science and Technology, 2016, 58: 36-47. [26] BETTOCCHI R, PINELLI M, SPINA P R, et al. Artificial intelligence for the diagnostics of gas turbines—Part I: Neural network approach[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(3): 711-719. [27] SADOUGH VANINI Z N, KHORASANI K, MESKIN N. Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach[J]. Information Sciences, 2014, 259: 234-251. [28] TAYARANI-BATHAIE S S, KHORASANI K. Fault detection and isolation of gas turbine engines using a bank of neural networks[J]. Journal of Process Control, 2015, 36: 22-41. [29] ZHONG S S, FU S, LIN L. A novel gas turbine fault diagnosis method based on transfer learning with CNN[J]. Measurement, 2019, 137: 435-453. [30] LIAO Z B, WANG J, LIU J X, et al. Uncertainties in gas-path diagnosis of gas turbines: Representation and impact analysis[J]. Aerospace Science and Technology, 2021, 113: 106724. [31] LEE Y K, MAVRIS D N, VOLOVOI V V, et al. A fault diagnosis method for industrial gas turbines using Bayesian data analysis[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(4): 044602. [32] ZAIDAN M A, MILLS A R, HARRISON R F, et al. Gas turbine engine prognostics using Bayesian hierarchical models: A variational approach[J]. Mechanical Systems and Signal Processing, 2016, 70-71: 120-140. [33] MACK D L C, BISWAS G, KOUTSOUKOS X D, et al. Learning Bayesian network structures to augment aircraft diagnostic reference models[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1): 358-369. [34] MA N, YANG F, TAO L F, et al. State-of-health assessment for aero-engine based on density-distance clustering and fuzzy Bayesian risk[J]. IEEE Access, 2021, 9: 9996-10011. [35] GRÖNSTEDT T. Least squares based transient nonlinear gas path analysis[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 2008: 705-714. [36] OGAJI S O T, LI Y G, SAMPATH S, et al. Gas path fault diagnosis of a turbofan engine from transient data using artificial neural networks[C]//Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: American Society of Mechanical Engineers, 2009: 405-414. [37] ZHOU D J, YAO Q B, WU H, et al. Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks[J]. Energy, 2020, 200: 117467. [38] SAMPATH S, LI Y G, OGAJI S O T, et al. Fault diagnosis of a two spool turbo-fan engine using transient data: A genetic algorithm approach[C]//Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: American Society of Mechanical Engineers, 2009: 351-359. [39] BORGUET S, HENRIKSSON M, MCKELVEY T, et al. A study on engine health monitoring in the frequency domain[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(8): 081604. [40] PUTZ A, STAUDACHER S, KOCH C, et al. Jet engine gas path analysis based on takeoff performance snapshots[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(11): 111201. [41] WANG C, LI Y G, YANG B Y. Transient performance simulation of aircraft engine integrated with fuel and control systems[J]. Applied Thermal Engineering, 2017, 114: 1029-1037. [42] 王洪伟, 陈果, 陈立波, 等. 一种航空发动机滚动轴承磨损故障监测技术[J]. 航空动力学报, 2014, 29(9): 2256-2263. WANG H W, CHEN G, CHEN L B, et al. A fault monitoring technique for wear of aero-engine rolling bearing[J]. Journal of Aerospace Power, 2014, 29(9): 2256-2263(in Chinese). [43] 孙衍山, 杨昊, 佟海滨, 等. 航空发动机滑油磨粒在线监测[J]. 仪器仪表学报, 2017, 38(7): 1561-1569. SUN Y S, YANG H, TONG H B, et al. Review of on-line detection for wear particles in lubricating oil of aviation engine[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1561-1569(in Chinese). [44] WANG W Y, FORRESTER B D, FRITH P C. A unified approach to detecting and trending changes caused by mechanical faults in rotating machinery[J]. Structural Health Monitoring, 2016, 15(2): 204-222. [45] GRYLLIAS K, MOSCHINI S, ANTONI J. Application of cyclo-nonstationary indicators for bearing monitoring under varying operating conditions[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(1): 012501. [46] ONISHCHENKO E A, ZINKOVSKII A P, KRUTS V A. Determination of the vibration diagnostic parameters indicating the presence of a mode I crack in a blade airfoil at the main, super-and subharmonic resonances[J]. Strength of Materials, 2018, 50(3): 369-375. [47] BARBINI L, OMPUSUNGGU A P, HILLIS A J, et al. Phase editing as a signal pre-processing step for automated bearing fault detection[J]. Mechanical Systems and Signal Processing, 2017, 91: 407-421. [48] BARBINI L, ELTABACH M, HILLIS A J, et al. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing[J]. Mechanical Systems and Signal Processing, 2018, 103: 76-88. [49] WALIGÓRSKI M, BATURA K, KUCAL K, et al. Research on airplanes engines dynamic processes with modern acoustic methods for fast and accurate diagnostics and safety improvement[J]. Measurement, 2020, 154: 107460. [50] WALIGÓRSKI M, BATURA K, KUCAL K, et al. Empirical assessment of thermodynamic processes of a turbojet engine in the process values field using vibration parameters[J]. Measurement, 2020, 158: 107702. [51] FONG S, HARMOUCHE J, NARASIMHAN S, et al. Mean shift clustering-based analysis of nonstationary vibration signals for machinery diagnostics[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4056-4066. [52] WEN D Z, CHEN Y S. Bifurcation analysis of fan casing under rotating air flow excitation[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1099-1114. [53] 温登哲, 陈予恕. 径向简谐激励下航空发动机机匣的振动分析[J]. 航空动力学报, 2015, 30(1): 96-105. WEN D Z, CHEN Y S. Vibration analysis of aero-engine casing under radial harmonic excitation[J]. Journal of Aerospace Power, 2015, 30(1): 96-105(in Chinese). [54] GAO P, HOU L, CHEN Y S. Analytical analysis for the nonlinear phenomena of a dual-rotor system at the case of primary resonances[J]. Journal of Vibration Engineering & Technologies, 2021, 9(4): 529-540. [55] 孙传宗, 陈予恕, 侯磊. 复杂结构双转子系统的建模及模型缩减[J]. 航空动力学报, 2017, 32(7): 1747-1753. SUN C Z, CHEN Y S, HOU L. Modeling method and reduction of dual-rotor system with complicated structures[J]. Journal of Aerospace Power, 2017, 32(7): 1747-1753(in Chinese). [56] JIN Y L, LU K, HUANG C X, et al. Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method[J]. Applied Mathematical Modelling, 2019, 75: 553-571. [57] 徐梅鹏, 侯磊, 李洪亮, 等. 外转子支点不同心的双转子系统振动特性[J]. 振动与冲击, 2019, 38(4): 1-6. XU M P, HOU L, LI H L, et al. Dynamic characteristics of a dual-rotor system with outer-rotor misalignment[J]. Journal of Vibration and Shock, 2019, 38(4): 1-6(in Chinese). [58] WANG N F, JIANG D X. Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: Theoretical analysis and experimental study[J]. Mechanism and Machine Theory, 2018, 125: 207-219. [59] WANG N F, LIU C, JIANG D X, et al. Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing[J]. Mechanical Systems and Signal Processing, 2019, 118: 61-77. [60] 邓四二, 贺凤祥, 杨海生, 等. 航空发动机双转子-滚动轴承耦合系统的动力特性分析[J]. 航空动力学报, 2010, 25(10): 2386-2395. DENG S E, HE F X, YANG H S, et al. Analysis on dynamic characteristics of a dual rotor-rolling bearing coupling system for aero-engine[J]. Journal of Aerospace Power, 2010, 25(10): 2386-2395(in Chinese). [61] 邓四二, 付金辉, 王燕霜, 等. 航空发动机滚动轴承-双转子系统动态特性分析[J]. 航空动力学报, 2013, 28(1): 195-204. DENG S E, FU J H, WANG Y S, et al. Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power, 2013, 28(1): 195-204(in Chinese). [62] YANG L H, MAO Z, CHEN X F, et al. Dynamic coupling vibration of rotating shaft-disc-blade system—Modeling, mechanism analysis and numerical study[J]. Mechanism and Machine Theory, 2022, 167: 104542. [63] WU S M, WANG Z K, LI H Q, et al. Blade crack detection using blade tip timing[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13. [64] 吴淑明, 胡海峰, 赵志斌, 等. 增强稀疏分解及其在叶片振动参数识别中的应用[J]. 机械工程学报, 2019, 55(19): 19-27. WU S M, HU H F, ZHAO Z B, et al. Enhancing sparse decomposition based blade vibration parameter identification[J]. Journal of Mechanical Engineering, 2019, 55(19): 19-27(in Chinese). [65] SUN Q, MA H, ZHU Y P, et al. Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models[J]. Mechanical Systems and Signal Processing, 2018, 108: 1-20. [66] 马辉, 孙祺, 太兴宇, 等. 旋转叶片-机匣碰摩振动响应分析[J]. 振动与冲击, 2017, 36(14): 26-32. MA H, SUN Q, TAI X Y, et al. Vibration response analysis on the rotating blade-casing rubbing[J]. Journal of Vibration and Shock, 2017, 36(14): 26-32(in Chinese). [67] MA Y H, CAO C, ZHANG D Y, et al. Constraint mechanical model and investigation for rub-impact in aero-engine system[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: American Society of Mechanical Engineers, 2015: V001T01A018. [68] HONG J, YU P C, ZHANG D Y, et al. Dynamic characteristics of rotor system with additional constraint due to rub-impact[C]//Volume 7A: Structures and Dynamics. New York: American Society of Mechanical Engineers, 2016: V07AT30A006. [69] WANG C, ZHANG D Y, MA Y H, et al. Theoretical and experimental investigation on the sudden unbalance and rub-impact in rotor system caused by blade off[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 111-135. [70] MA Y H, LIANG Z C, ZHANG D Y, et al. Experimental investigation on dynamical response of an overhung rotor due to sudden unbalance[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: American Society of Mechanical Engineers, 2015: V07BT32A009. [71] WANG C, MA Y H, ZHANG D Y, et al. Interval analysis on aero-engine rotor system with misalignment[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: American Society of Mechanical Engineers, 2015: V07AT30A002. [72] 陈立芳, 王维民, 高金吉. 航空发动机自动平衡技术发展综述[J]. 航空动力学报, 2019, 34(7): 1530-1541. CHEN L F, WANG W M, GAO J J. Summary on the development of auto-balancing technology of aero-engine[J]. Journal of Aerospace Power, 2019, 34(7): 1530-1541(in Chinese). [73] PAN X, LU J Q, HUO J J, et al. A review on self-recovery regulation (SR) technique for unbalance vibration of high-end equipment[J]. Chinese Journal of Mechanical Engineering, 2020, 33: 89. [74] FENG Z P, YU X N, ZHANG D, et al. Generalized adaptive mode decomposition for nonstationary signal analysis of rotating machinery: Principle and applications[J]. Mechanical Systems and Signal Processing, 2020, 136: 106530. [75] 陈雪峰, 王诗彬, 程礼. 航空发动机快变信号的匹配同步压缩变换研究[J]. 机械工程学报, 2019, 55(13): 13-22. CHEN X F, WANG S B, CHENG L. Matching synchrosqueezing transform for aero-engine's signals with fast varying instantaneous frequency[J]. Journal of Mechanical Engineering, 2019, 55(13): 13-22(in Chinese). [76] WANG Y, TANG B P, QIN Y, et al. Rolling bearing fault detection of civil aircraft engine based on adaptive estimation of instantaneous angular speed[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4938-4948. [77] LIN T, CHEN G, OUYANG W L, et al. Hyper-spherical distance discrimination: A novel data description method for aero-engine rolling bearing fault detection[J]. Mechanical Systems and Signal Processing, 2018, 109: 330-351. [78] 陈果, 贺志远, 尉询楷, 等. 基于整机的中介轴承外圈剥落故障振动分析[J]. 航空动力学报, 2020, 35(3): 658-672. CHEN G, HE Z Y, WEI X K, et al. Vibration analysis of peeling fault of intermediate bearing outer ring based on whole aero-engine[J]. Journal of Aerospace Power, 2020, 35(3): 658-672(in Chinese). [79] HONG L H, LIU X B, ZUO H Y. Compound faults diagnosis based on customized balanced multiwavelets and adaptive maximum correlated kurtosis deconvolution[J]. Measurement, 2019, 146: 87-100. [80] ZHANG H, CHEN X F, ZHANG X L, et al. Aero-engine bearing fault detection: A clustering low-rank approach[J]. Mechanical Systems and Signal Processing, 2020, 138: 106529. [81] ANTONI J, GRIFFATON J, ANDRÉ H, et al. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine[J]. Mechanical Systems and Signal Processing, 2017, 97: 112-144. [82] NADERI E, KHORASANI K. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors[J]. Mechanical Systems and Signal Processing, 2018, 100: 415-438. [83] ZACCARIA V, RAHMAN M, ASLANIDOU I, et al. A review of information fusion methods for gas turbine diagnostics[J]. Sustainability, 2019, 11(22): 6202. [84] SARKAR S, SINGH D S, SRIVASTAV A, et al. Semantic sensor fusion for fault diagnosis in aircraft gas turbine engines[C]//Proceedings of the 2011 American Control Conference. Piscataway: IEEE Press, 2011: 220-225. [85] FANG X L, PAYNABAR K, GEBRAEEL N. Multistream sensor fusion-based prognostics model for systems with single failure modes[J]. Reliability Engineering & System Safety, 2017, 159: 322-331. [86] ZACCARIA V, FENTAYE A D, STENFELT M, et al. Probabilistic model for aero-engines fleet condition monitoring[J]. Aerospace, 2020, 7(6): 66. [87] CHEN M, HU L Q, TANG H L. An approach for optimal measurements selection on gas turbine engine fault diagnosis[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(7): 071203. [88] LIU L S, LIU D T, ZHANG Y J, et al. Effective sensor selection and data anomaly detection for condition monitoring of aircraft engines[J]. Sensors, 2016, 16(5): 623. [89] LIU L S, LIU D T, PENG Y. Anomalous sensing data recovery with mutual information and relevance vector machine[C]//201713th IEEE International Conference on Electronic Measurement & Instruments. Piscataway: IEEE Press, 2017: 247-252. [90] ZHANG B, ZHENG K, LUO J F, et al. Informative sensor selection and health indicator construction for aircraft engines prognosis[C]//2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). Piscataway: IEEE Press, 2019: 442. [91] KRIVOSHEEV I A, ROZHKOV K E, SIMONOV N B. Complex diagnostic index for technical condition assessment for GTE[J]. Procedia Engineering, 2017, 206: 176-181. [92] LIU K B, CHEHADE A, SONG C Y. Optimize the signal quality of the composite health index via data fusion for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(3): 1504-1514. [93] YAN H, LIU K B, ZHANG X, et al. Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions[J]. IEEE Transactions on Reliability, 2016, 65(3): 1416-1426. [94] CHEHADE A, BONK S, LIU K B. Sensory-based failure threshold estimation for remaining useful life prediction[J]. IEEE Transactions on Reliability, 2017, 66(3): 939-949. [95] 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报, 2019, 40(12): 223312. REN Z Q, SI X S, HU C H, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 223312(in Chinese). [96] ZAIDAN M A, HARRISON R F, MILLS A R, et al. Bayesian hierarchical models for aerospace gas turbine engine prognostics[J]. Expert Systems with Applications, 2015, 42(1): 539-553. [97] GHORBANI S, SALAHSHOOR K. Estimating remaining useful life of turbofan engine using data-level fusion and feature-level fusion[J]. Journal of Failure Analysis and Prevention, 2020, 20(1): 323-332. [98] ZHAO Z Q, BIN L, WANG X Q, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning[J]. Reliability Engineering & System Safety, 2017, 164: 74-83. [99] HUANG H Z, CUI P L, PENG W W, et al. Fatigue lifetime assessment of aircraft engine disc via multi-source information fusion[J]. International Journal of Turbo & Jet-Engines, 2014, 31(2): 167-174. [100] MIAO H H, LI B, SUN C, et al. Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5023-5032. [101] TANG S X, TANG H L, CHEN M. Transfer-learning based gas path analysis method for gas turbines[J]. Applied Thermal Engineering, 2019, 155: 1-13. [102] HUANG D S, BAI R, ZHAO S, et al. Bayesian neural network based method of remaining useful life prediction and uncertainty quantification for aircraft engine[C]//2020 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2020: 1-8. [103] CHEN S W, WANG M N, HUANG D S, et al. Remaining useful life prediction for complex systems with multiple indicators based on particle filter and parameter correlation[J]. IEEE Access, 2020, 8: 215145-215156. [104] 王仲生, 赵鹏. 基于多源信息融合的发动机转子早期故障识别[J]. 西北工业大学学报, 2009, 27(3): 326-329. WANG Z S, ZHAO P. Applying method of multi-source information fusion to achieving early diagnosis of aero-engine rotor fault[J]. Journal of Northwestern Polytechnical University, 2009, 27(3): 326-329(in Chinese). [105] 陈曦, 廖明夫, 王俨剀. 航空发动机故障融合诊断研究[J]. 航空发动机, 2013, 39(4): 78-84. CHEN X, LIAO M F, WANG Y K. Investigation of aeroengine fault fusion diagnosis[J]. Aeroengine, 2013, 39(4): 78-84(in Chinese). [106] 李洪伟, 马中原, 谢镇波. 基于集成神经网络的航空发动机故障诊断研究[J]. 新技术新工艺, 2018(8): 63-66. LI H W, MA Z Y, XIE Z B. Research on fault diagnosis of aero-engine based on integrated neural network[J]. New Technology & New Process, 2018(8): 63-66(in Chinese). [107] 车畅畅, 王华伟, 倪晓梅, 等. 基于深度学习的航空发动机故障融合诊断[J]. 北京航空航天大学学报, 2018, 44(3): 621-628. CHE C C, WANG H W, NI X M, et al. Fault fusion diagnosis of aero-engine based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 621-628(in Chinese). |
[1] | 赵春晖, 刘安萌, 吕洋, 潘泉. 无人机韧性自主定位技术综述[J]. 航空学报, 2024, 45(8): 28839-028839. |
[2] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[3] | 黄湛钧, 董鑫, 卢沐宇, 张瑞涛, 闫钊阳, 张安. 基于DRSN与电压幅值分析的航空HVDC系统逆变器故障诊断[J]. 航空学报, 2024, 45(3): 328685-328685. |
[4] | 李天晴, 王维民, 张旭龙, 王树慧, 付振宇. 基于叶尖定时的转子叶片轴向位移辨识方法[J]. 航空学报, 2024, 45(2): 228682-228682. |
[5] | 李晖, 陈银超, 孙绍山, 梁兆鑫, 毛刚, 乔彬, 李永波. 基于联邦图网络的转子系统故障诊断方法[J]. 航空学报, 2024, 45(17): 530611-530611. |
[6] | 胡渊豪, 宋艺博, 刘家辉, 赵孝礼, 邓文翔, 胡健, 姚建勇. 基于注意力卷积胶囊网络的电液比例伺服阀故障诊断[J]. 航空学报, 2024, 45(15): 630407-630407. |
[7] | 李洁, 黄文新, 蔡一鸣, 王思远, 高宇飞, 蒋雪峰. 基于DFPMM的位置传感器故障诊断与容错控制[J]. 航空学报, 2024, 45(10): 329307-329307. |
[8] | 贾宝惠, 姜番, 王玉鑫, 王杜. 基于民机维修文本数据的故障诊断方法[J]. 航空学报, 2023, 44(5): 326598-326598. |
[9] | 王金瑞, 季珊珊, 张宗振, 初振云, 韩宝坤, 鲍怀谦. 并行稀疏滤波在轴承声信号下的故障诊断[J]. 航空学报, 2023, 44(4): 426887-426887. |
[10] | 陈泽灏, 陈晖, 高玉闪, 张航. 基于模型的液体火箭发动机故障诊断技术回顾与展望[J]. 航空学报, 2023, 44(23): 629016-629016. |
[11] | 于功也, 蔡伟东, 胡明辉, 刘文才, 马波. 故障机理与领域自适应混合驱动的机械故障智能迁移诊断[J]. 航空学报, 2023, 44(2): 426800-426800. |
[12] | 王涛, 高雪峰, 祝景萍, 董松, 孙连军, 郑侃. 机器人纵扭超声铣边颤振在线监测方法[J]. 航空学报, 2023, 44(13): 262-272. |
[13] | 文超, 董文瀚, 解武杰, 蔡鸣, 刘日. 基于回访机制的无人机集群分布式协同区域搜索方法[J]. 航空学报, 2023, 44(11): 327561-327561. |
[14] | 郭丞皓, 于劲松, 宋悦, 尹琦, 李佳璇. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023, 44(11): 227629-227629. |
[15] | 王芳丽, 刘凯, 潘微, 童明波. 民机结构绿色维修技术应用与发展[J]. 航空学报, 2023, 44(11): 25851-025851. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2013
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 3445
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学