[1] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests: virtual flight testing (VFT): AIAA-1995-3875[R]. Reston: AIAA, 1995. [2] 赵忠良, 吴军强, 李浩, 等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016, 37(2): 504-512. ZHAO Z L, WU J Q, LI H, et al.Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 504-512(in Chinese). [3] GEBER T G, KELL Y J, LOPEZ J. Wind tunnel based virtual flight testing: AIAA-2000-0829[R]. Reston: AIAA, 2000. [4] MAGILL J C, WEHEF S D. Initial test of a wire suspension mount for missile virtual flight testing: AIAA-2002-0169 [R]. Reston: AIAA, 2002. [5] LAWRENCE F C, MILLS B H. Status update of the AEDC virtual flight testing development program: AIAA-2002-0168 [R]. Reston: AIAA, 2002. [6] LOWENBERG M H, KYLE H L. Development of a pendulum support rig dynamic wind tunnel apparatus: AIAA-2002-4879 [R]. Reston: AIAA, 2002. [7] DAVISON P M. Development modelling and control of a multi-degree-of-freedom dynamic wind tunnel rig[D]. Bristol:University of Bristol, 2003. [8] GATTO A, LOWENBERG M H. Evaluation of a three-degree-of-freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6): 1747-1762. [9] PATTINSON J, LOWENBERG M H, GOMAN M G. A Multi-degree-of-freedom rig for the wind tunnel determination of dynamic data: AIAA-2009-5727[R]. Reston: AIAA, 2009. [10] PATTINSON J, LOWENBERG M H, GOMAN M G. Characterisation of wind tunnel observed large-amplitude pitch limit-cycles: AIAA-2011-6526 [R]. Reston: AIAA, 2011. [11] GONG Z, ARAUJO-ESTRADA S, LOWENBERG M H, et al. Experimental investigation of aerodynamic hysteresis using a five-degree-of-freedom wind-tunnel maneuver rig[J]. Journal of Aircraft, 2019,56(3): 1-11. [12] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3 DOF gimbal [C]//29th Congress of the International Council of the Aeronautical Sciences, 2014. [13] IGNATYEV D I, SIDORYUK M E, KOLINKO A, et al. Dynamic rig for validation of control algorithms at high angles of attack[J]. Journal of Aircraft, 2017, 54(5): 1760-1771. [14] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012. LI H. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyan:China Aerodynamics Research and Develop-ment Center, 2012(in Chinese). [15] 郭林亮, 祝明红, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016, 37(8): 2583-2593. GUO L L, ZHU M H, KONG P, et al. Analysis of dy-namic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2583-2593(in Chinese). [16] 郭林亮, 祝明红, 傅澔, 等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报, 2017, 35(5): 708-717. GUO L L, ZHU M H, FU H, et al. Modeling and simula-tion for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717(in Chi-nese). [17] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030. GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030(in Chinese). [18] 岑飞, 聂博文, 刘志涛, 等. 低速风洞带动力模型自由飞试验[J]. 航空学报, 2017, 38(10): 121214. CEN F, NIE B W, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aer-onautica et Astronautica Sinica, 2017, 38(10): 121214(in Chinese). [19] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444. CEN F, NIE B W, LIU Z T, et al. wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444 (in Chinese). [20] CEN F, LI Q, LIU Z T, et al. Post-stall flight dynamics of commercial transport aircraft configuration: A nonlinear bifurcation analysis and validation[J]. Journal of Aerospace Engineering, 2020, 235(3):1-17. [21] 吕光男. 风洞虚拟飞行试验中的飞行力学与控制问题研究[D]. 南京: 南京航空航天大学, 2009. LV G N. Research on a flight dynamics and control in wind tunnel based virtual flight test, Master thesis[D]. Nanjing:Nanjing University of Aeronautics and Astro-nautics, 2009(in Chinese). [22] WANG Z A, GONG Z, CHEN Y L, et al. Practical control implementation of tri-tiltRotor flying wing unmanned aerial vehicles based upon active disturbance rejection control[J]. Journal of Aerospace Engineering, 2020, 234(4):1-18. [23] 尚祖铭, 吴佳莉, 牛中国, 等. 带等离子控制的飞翼布局飞机模型的风洞虚拟飞行试验[J]. 航空科学技术, 2019, 30(9): 40-46. SHANG Z M, WU J L, NIU Z G, et al, The wind tunnel virtual flight test of flying wing configuration aircraft model with the plasma actuation[J]. Aeronautical Science & Technology, 2019, 30(9): 40-46(in Chinese). [24] 张石玉, 赵俊波, 付增良, 等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学, 2020,34(1):49-54. ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54(in Chinese). [25] 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006. HUANG Z, ZHAO Y S, ZHAO T S. Advanced spatial mechanism[M]. Beijing:Higher Education Press, 2006(in Chinese). [26] 黄真, 曾达幸. 机构自由度计算-原理和方法[M]. 北京:高等教育出版社, 2016. HUANG Z, ZENG D X, Freedom calculation of mecha-nism: principle and method[M]. Beijing: Higher Education Press, 2016(in Chinese). [27] 杨文, 王建锋, 吴佳莉. 高机动战斗机气动/运动控制耦合的低速风洞虚拟飞行试验技术研究[C]//第十届全国流体力学学术会议, 2018. YANG W, WANG J F, WU J L. Research on virtual flight test technology of aerodynamic/motion control cou-pling for high maneuverable fighter in low speed wind tunnel[C]//The 10th National Conference on Fluid Mechanics, 2018(in Chinese). [28] 吴森堂. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2018. WU S T. Flight control system[M]. Beijing: Beihang University Press, 2018(in Chinese). [29] 彭苗娇, 吴惠松, 林麒, 等. 考虑绳阻尼的绳系并联机器人动力学特性分析[J]. 北京航空航天大学学报, 2019, 46(2): 304-313. PENG M J, WU H S, LIN Q, et al. Dynamic characteris-tics of wire-driven parallel robot with wire damping[J]. Journal of Beijing University of Aeronautics and Astro-nautics, 2019, 46(2): 304-313(in Chinese). [30] 潘家鑫, 林麒, 吴惠松, 等. 基于WDPR-8支撑与弯刀尾支撑的风洞对比试验研究[J]. 北京航空航天大学学报, 2021(in press). PAN J X, LIN Q, WU H S, et al. Experimental study on wind tunnel based on WDPR-8 and machetes tail[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021 (in press) (in Chinese). |