[1] BUNKER R S. Gas turbine heat transfer:Ten remaining hot gas path challenges[J]. Journal of Turbomachinery, 2007, 129(2):193-201. [2] 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2):520718. GUO Z Q, ZHENG M, DONG W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):520718(in Chinese). [3] 高杰, 郑群, 岳国强, 等. 燃气轮机涡轮叶顶间隙气热技术研究进展[J]. 航空学报, 2017, 38(9):521019. GAO J, ZHENG Q, YUE G Q, et al. Research progress on turbine blade tip aerodynamics and heat transfer technology for gas turbines[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):521019(in Chinese). [4] COLUCCI D W, VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J]. Experimental Thermal and Fluid Science, 1996, 13(1):71-80. [5] LEE J, LEE S J. The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J]. International Journal of Heat and Mass Transfer, 2000, 43(18):3497-3509. [6] GULATI P, KATTI V, PRABHU S V. Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet[J]. International Journal of Thermal Sciences, 2009, 48(3):602-617. [7] CARLOMAGNO G M, IANIRO A. Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance:A review[J]. Experimental Thermal and Fluid Science, 2014, 58:15-35. [8] VIOLATO D, SCARANO F. Three-dimensional evolution of flow structures in transitional circular and chevron jets[J]. Physics of Fluids, 2011, 23(12):124104. [9] VIOLATO D, IANIRO A, CARDONE G, et al. Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J]. International Journal of Heat and Fluid Flow, 2012, 37:22-36. [10] YU Y Z, ZHANG J Z, XU H S. Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs[J]. International Journal of Heat and Mass Transfer, 2014, 72:222-233. [11] VINZE R, CHANDEL S, LIMAYE M D, et al. Local heat transfer distribution between smooth flat surface and impinging incompressible air jet from a chevron nozzle[J]. Experimental Thermal and Fluid Science, 2016, 78:124-136. [12] 吕元伟, 张靖周, 王博滟, 等. 冠齿喷嘴射流冲击平直靶面对流换热实验[J]. 航空学报, 2018, 39(3):121694. LYU Y W, ZHANG J Z, WANG B Y, et al. Experimental of chevron nozzle jet impingement heat transfer on flat targeting surface[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121694(in Chinese). [13] CRISPO C M, GRECO C S, AVALLONE F, et al. On the flow organization of a chevron synthetic jet[J]. Experimental Thermal and Fluid Science, 2017, 82:136-146. [14] CRISPO C M, GRECO C S, CARDONE G. Convective heat transfer in circular and chevron impinging synthetic jets[J]. International Journal of Heat and Mass Transfer, 2018, 126:969-979. [15] LYU Y W, ZHANG J Z, LIU X C, et al. Experimental investigation of impinging heat transfer of the pulsed chevron jet on a semi-cylindrical concave plate[J]. Journal of Heat Transfer, 2019, 141:032201. [16] CORNARO C, FLEISCHER A S, GOLDSTEIN R J. Flow visualization of a round jet impinging on cylindrical surfaces[J]. Experimental Thermal and Fluid Science, 1999, 20(2):66-78. [17] LEE D H, CHUNG Y S, KIM D S. Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet[J]. International Journal of Heat and Fluid Flow, 1997, 18(1):160-169. [18] LEE D H, CHUNG Y S, WON S Y. The effect of concave surface curvature on heat transfer from a fully developed round impinging jet[J]. International Journal of Heat and Mass Transfer, 1999, 42(13):2489-2497. [19] FENOT M, DORIGNAC E, VULLIERME J J. An experimental study on hot round jets impinging a concave surface[J]. International Journal of Heat and Fluid Flow, 2008, 29(4):945-956. [20] BU X Q, PENG L, LIN G P, et al. Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge[J]. International Journal of Heat and Mass Transfer, 2015, 90:92-101. [21] ZHOU Y, LIN G P, BU X Q, et al. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces[J]. Chinese Journal of Aeronautics, 2017, 30(2):586-594. [22] GUAN T, ZHANG J Z, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 1:Experimental analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338. [23] GUAN T, ZHANG J Z, SHAN Y, et al. Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle-Part 2:Numerical analysis[J]. International Journal of Heat and Mass Transfer, 2017, 106:329-338. [24] LYU Y W, ZHANG J Z, LIU X C, et al. Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures[J]. Chinese Journal of Aeronautics, 2019, 32(10):2275-2285. [25] 李鑫郡, 张靖周, 谭晓茗. 单个压电风扇传热特性[J]. 航空学报, 2017, 38(7):120982. LI X J, ZHANG J Z, TAN X M. Characteristics of heat transfer with single piezoelectric fan[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120982(in Chinese). [26] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. [27] LILLY D K. A proposed modification of the germanosubgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4:633-635. [28] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulence flows:CTR-S88[R]. Stanford:Stanford University, 1988. |