[1] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210. GAO H, LI S C, FU Y Z, et al. Abrasive flow machining of additively manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210(in Chinese). [2] 田小永, 李涤尘, 卢秉恒. 空间3D打印技术现状与前景[J]. 载人航天, 2016, 22(4):471-476. TIAN X Y, LI D C, LU B H. Status and prospect of 3D printing technology in space[J]. Manned Spaceflight, 2016, 22(4):471-476(in Chinese). [3] 王功, 赵伟, 刘亦飞, 等. 太空制造技术发展现状与展望[J]. 中国科学:物理学力学天文学, 2020, 50(4):95-105. WANG G, ZHAO W, LIU Y F, et al. Review of space manufacturing technique and developments[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(4):95-105(in Chinese). [4] 刘亦飞, 李亮, 王功, 等. 空间金属增材制造技术应用[J]. 中国空间科学学报, 2018, 38(3):380-385. LIU Y F, LI L, WANG G, et al. Application of metal additive manufacturing technology for space[J]. Chinese Journal of Space Science, 2018, 38(3):380-385(in Chinese). [5] SNYDER M, DUNN J, GONZALEZ E. The effects of microgravity on extrusion based additive manufacturing[C]//AIAA SPACE 2013 Conference and Exposition. Reston:AIAA, 2013:5439. [6] HAFLEY R, TAMINGER K, BIRD R. Electron beam freeform fabrication in the space environment[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007:1154. [7] 曾如川, 葛一凡, 魏松, 等. 太空环境下电子束原位制造技术[J]. 航空学报, 2018, 39(增刊1):722227. ZENG R C, GE Y F, WEI S, et al. Electron beam in situ fabrication in space[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(S1):722227(in Chinese). [8] ZOCCA A, LÜCHTENBORG J, MVHLER T, et al. Enabling the 3D printing of metal components in μ-gravity[J]. Advanced Materials Technologies, 2019, 4(10):1900506. [9] HUANG J G, QI L H, LUO J, et al. Suppression of gravity effects on metal droplet deposition manufacturing by an anti-gravity electric field[J]. International Journal of Machine Tools and Manufacture, 2020, 148:103474. [10] HUANG J G, QI L H, LUO J, et al. Insights into the impact and solidification of metal droplets in ground-based investigation of droplet deposition 3D printing under microgravity[J]. Applied Thermal Engineering, 2021, 183:116176. [11] CHUN J H, PASSOW C H. Study of spray forming using uniform droplet sprays[J]. Advances in Powder Metallurgy, 1992, 1:377-391. [12] ORME M. A novel technique of rapid solidification net-form materials synthesis[J]. Journal of Materials Engineering and Performance, 1993, 2(3):399-405. [13] LIU Q B, ORME M. High precision solder droplet printing technology and the state-of-the-art[J]. Journal of Materials Processing Technology, 2001, 115(3):271-283. [14] CHAO Y P, QI L H, XIAO Y, et al. Manufacturing of micro thin-walled metal parts by micro-droplet deposition[J]. Journal of Materials Processing Technology, 2012, 212(2):484-491. [15] ZENOU M, SA'AR A, KOTLER Z. Laser transfer of metals and metal alloys for digital microfabrication of 3D objects[J]. Small, 2015, 11(33):4082-4089. [16] LUO J, POHL R, QI L H, et al. Printing functional 3D microdevices by laser-induced forward transfer[J]. Small, 2017, 13(9):1602553. [17] FANG M, CHANDRA S, PARK C B. Building three-dimensional objects by deposition of molten metal droplets[J]. Rapid Prototyping Journal, 2008, 14(1):44-52. [18] 陈从平, 张涛, 丁汉. 考虑残留量的针头-基板间微量胶液接触转移过程数值模拟[J]. 机械工程学报, 2014, 50(14):197-203. CHEN C P, ZHANG T, DING H. Numerical simulation of micro-fluid contact transfer process by considering pinhead epoxy residue[J]. Journal of Mechanical Engineering, 2014, 50(14):197-203(in Chinese). [19] FULLER S B, WILHELM E J, JACOBSON J M. Ink-jet printed nanoparticle microelectromechanical systems[J]. Journal of Microelectromechanical Systems, 2002, 11(1):54-60. [20] FISCHER A C, MÄNTYSALO M, NIKLAUS F. Inkjet printing, laser-based micromachining and micro 3D printing technologies for MEMS[M]//Handbook of Silicon Based MEMS Materials and Technologies. Amsterdam:Elsevier, 2015:550-564. [21] NGUYEN-THI H, REINHART G, BROWNE D J, et al. In situ X-ray studies of directional solidification of metal alloys in microgravity conditions[C]//23rd ESA Symposium on Rocket and Balloon Programmes and Related Research. Paris:ESA, 2017. [22] COOPER K G, GRIFFIN M R. Microgravity manufacturing via fused deposition:NASA/TM-2003-212636[R]. Huntsville:NASA Marshall Space Flight Center, 2003. [23] YIM P. The role of surface oxidation in the break-up of laminar liquid metal jets[D]. Cambridge:Massachusetts Institute of Technology, 1996. [24] ARTEM'EV B V, KOCHETOV S G. Capillary breakup of a liquid-metal jet in an oxidizing medium[J]. Journal of Engineering Physics, 1991, 60(4):425-429. [25] MA M, WEI X F, SHU X Y, et al. Producing solder droplets using piezoelectric membrane-piston-based jetting technology[J]. Journal of Materials Processing Technology, 2019, 263:233-240. [26] ZHANG D C, QI L H, LUO J, et al. Direct fabrication of unsupported inclined aluminum Pillars based on uniform micro droplets deposition[J]. International Journal of Machine Tools and Manufacture, 2017, 116:18-24. [27] 丁祖荣. 工程流体力学(上册)[M]. 北京:机械工业出版社, 2013:208-209. DING Z R. Engineering fluid mechanics (Volume I)[M]. Beijing:China Machine Press, 2013:208-209(in Chinese). [28] 杨长安. 节流孔流场特性分析及液压泵减振槽研究[D]. 兰州:兰州理工大学, 2009:17-19. YANG C A. Analysis of flow field characteristic of orifice and study on damping grooves in hydraulic pump valve plate[D]. Lanzhou:Lanzhou University of Technology, 2009:17-19(in Chinese). [29] CHENG S, CHANDRA S. A pneumatic droplet-on-demand generator[J]. Experiments in Fluids, 2003, 34(6):755-762. |