[1] FINN C. Learning to learn with gradients[D]. Berkeley:University of California, Berkeley, 2018:1-20. [2] PATRICIA N, CAPUTO B. Learning to learn, from transfer learning to domain adaptation:A unifying perspective[C]//Proceedings of the IEEE Conference on Computer Vision and Pat-tern Recognition. Piscataway:IEEE Press, 2014:1442-1449. [3] HUANG J T, LI J, YU D, et al. Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2013:7304-7308. [4] WANG L, TANG K, XIN B, et al. Knowledge transfer between multi-granularity models for reinforcement learning[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Piscataway:IEEE Press, 2018:2881-2886. [5] MARKOVA V D, SHOPOV V K. Knowledge transfer in reinforcement learning agent[C]//Proceedings of the IEEE Internation-al Conference on Information Technologies (In-foTech). Piscataway:IEEE Press, 2019:1-4. [6] SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]//Proceedings of the International Conference on Machine Learning. New York:ACM, 2016:1842-1850. [7] XU Z, CAO L, CHEN X. Meta-Learning via weighted gradient update[J]. IEEE Access, 2019, 7:110846-110855. [8] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:MIT Press, 2016:438-481. [9] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [10] TAN C, SUN F, KONG T, et al. A survey on deep transfer learning[C]//Proceedings of the International Conference on Artificial Neural Networks, 2018:270-279. [11] TAYLOR M E, STONE P. Transfer learning for reinforcement learning domains:A survey[J]. Journal of Machine Learning Research, 2009, 10(7):1633-1685. [12] SUTTON R S, BARTO A G. Reinforcement learning:An introduction[M]. Cambridge:The MIT Press, 2016:161-280. [13] WEI R, ZHANG Q, XU Z. Peers' experience learning for developmental robots[J]. International Journal of Social Robotics, 2020, 12(1):35-45. [14] 张启瑞. 运用认知发育机理的无人机防碰撞控制方法研究[D]. 西安:空军工程大学, 2019:51-78. ZHANG Q R. Research on anti-collision control method of UAV using cognitive development mechanism[D]. Xi'an:Air Force Engineering University, 2019:51-78(in Chinese). [15] LI R, ZHAO Z, CHEN X, et al. TACT:A transfer actor-Critic learning framework for energy saving in cellular radio access networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(4):2000-2011. [16] KOUSHIK A M, HU F, KUMAR S. Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in cognitive radio networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(5):1204-1215. [17] ZHOU K, WEI R, ZHANG Q, et al. Learning system for air combat decision inspired by cognitive mechanisms of the nrain[J]. IEEE Access, 2020, 8:8129-8144. [18] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//Proceedings of the 31st International Conference on Machine Learning, 2014:387-395. [19] WANG L, WANG M, YUE T. A fuzzy deterministic policy gradient algorithm for pursuit-evasion differential games[J]. Neurocomputing, 2019, 362:106-117. [20] 刘冰雁,叶雄兵,周赤非,等. 基于改进DQN的复合模式在轨服务资源分配[J]. 航空学报, 2020, 41(5):323630. LIU B Y, YE X B, ZHOU C F, et al. Allocation of composite mode on-orbit service resource based on improved DQN[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):323630(in Chinese). [21] SUN T, TSAI S, LEE Y, et al. The study on ontelligent advanced fighter air combat decision support system[C]//Proceedings of the IEEE International Conference on Information Reuse & Integration. Piscataway:IEEE Press, 2006:39-44. |