[1] BROWN N. Next generation transport concepts and enabling technology research at NASA:NASA-20140011013[R]. Edwards:NASA Dryden Flight Research Center, 2014. [2] 张帅, 夏明, 钟伯文. 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016, 37(1):30-44. ZHANG S, XIA M, ZHONG B W. Evolution and technical factors influencing civil aircraft aerodynamic configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):30-44(in Chinese). [3] GUR O, BHATIA M, SCHETZ J A, et al. Design optimization of a truss-braced wing aircraft[C]//9th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2009. [4] BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research:Phase I final report:NASA/CR-2011-216847[R]. Washington, D.C.:NASA, 2011. [5] NAM T, CHAKRABORTY I, GROSS J, et al. Multidisciplinary design optimization of a truss braced wing concept[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2014. [6] ZHANG K S, JI P B, BAKAR A, et al. Multidisciplinary evaluation of truss-braced wing for future green aircraft[C]//28th International Congress of the Aeronautical Sciences, 2012:1-8. [7] GERN F, KO A, GROSSMAN B, et al. Transport weight reduction through MDO:The strut-braced wing transonic transport[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston, VA:AIAA, 2005. [8] 朱自强, 王晓璐, 吴宗成, 等. 支撑机翼跨声速民机的多学科优化设计[J]. 航空学报, 2009, 30(1):1-11. ZHU Z Q, WANG X L, WU Z C, et al. Multi-disciplinary optimization of strut-braced wing transonic transport[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1):1-11(in Chinese). [9] 余雄庆, 欧阳星, 邢宇, 等. 机翼结构重量预测的多学科分析优化方法[J]. 航空学报, 2016, 37(1):235-243. YU X Q, OUYANG X, XING Y, et al. Weight prediction method of wing-structure using multidisciplinary analysis and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):235-243(in Chinese). [10] BHATIA M, KAPANIA R K, HOEK M V, et al. Structural design of a truss braced wing-Potential and challenges[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2009. [11] GERN F H, NAGHSHINEH-POUR A H, SULAEMAN E, et al. Structural wing sizing for multidisciplinary design optimization of a strut-braced wing[J]. Journal of Aircraft, 2001, 38(1):154-163. [12] MALLIK W, KAPANIA R K, SCHETZ J A. Multidisciplinary design optimization of medium-range transonic truss-braced wing aircraft with flutter constraint[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013. [13] MALLIK W, KAPANIA R K, SCHETZ J A. Effect of flutter on the multidisciplinary design optimization of truss-braced wing aircraft[J]. Journal of Aircraft, 2015, 52(6):1-15. [14] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2006. [15] 雷莉, 韩庆, 钟小平. 翼面结构结点载荷转换分配方法的比较分析[J]. 航空工程进展, 2014, 5(3):383-389. LEI L, HAN Q, ZHONG X P.comparative analysis of conversion distribution methods for wing structural node loads[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3):383-389(in Chinese). [16] BOOKSTEIN F L. Principal warps:Thin plate splines and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(6):567-585. [17] TORENBEEK E. Advanced aircraft design[M]. Chichester:John Wiley & Sons Ltd., 2013:229-257. [18] HASSIG H J. An approximate true damping solution of the flutter equation by determinant iteration[J]. Journal of Aircraft, 1971, 8(11):885-889. [19] Theoretical background for optimus[EB/OL]. Gaston, Geenslaan:Noesis Solutions, 2016:101-104. [20] 邢宇, 余雄庆. 桁架支撑机翼布局客机的机翼质量计算[J]. 机械设计与制造工程, 2018, 47(2):83-86. XING Y, YU X Q. The wing mass estimation for commercial aircraft with truss-braced wing configuration[J]. Machine Design and Manufacturing Engineering, 2018, 47(2):83-86(in Chinese). [21] NAGHSHINEH-POUR A H. Structural optimization and design of a strut-braced wing aircraft[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 1998:14-20. [22] GRASMEYER J M. Multidisciplinary design optimization of a strut-braced wing aircraft[D]. Blacksburg, VA:Virginia Polytechnic Institute and State University, 1998. [23] 肖志鹏, 赵群, 徐吉峰. 考虑气动弹性约束的复合材料支撑机翼优化设计[J]. 复合材料学报, 2014, 31(1):194-199. XIAO Z P, ZHAO Q, XU J F. Optimization design of composite strut-braced wings with aeroelastic constraint[J]. Acta Materiae Compositae Sinica, 2014, 31(1):194-199(in Chinese). |