[1] GIORGI G, TEUNISSEN P J G, VERHAGEN S, et al. Improving the GNSS attitude ambiguity success rate with the multivariate constrained LAMBDA method[J]. Springer Berlin Heidelberg, 2012, 136(3):941-948. [2] 张方照, 柴艳菊, 柴华, 等. 两种多天线GNSS定姿方法的精度分析[J]. 中国惯性技术学报, 2016, 24(1):30-35. ZHANG F Z, CHAI Y J, CHAI H, et al. Analysis on precision of two attitude determination methods using GNSS multi-antenna data[J]. Journal of Chinese Inertial Technology, 2016, 24(1):30-35(in Chinese). [3] GIORGI G. The multivariate constrained LAMBDA method for single-epoch, single-frequency GNSS-based full attitude determination[C]//Institute of Navigation GNSS 2010 Conference. Manassas, VA:ION-GNSS, 2010:1429-1439. [4] GIORGI G, TEUNISSEN P J G, VERHAGEN S, et al. Instantaneous ambiguity resolution in global navigation satellite system based attitude determination applications:A multivariate constrained approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1):51-67. [5] TEUNISSEN P J G. The affine constrained GNSS attitude model and its multivariate integer least-squares solution[J]. Journal of Geodesy, 2012, 86(7):547-563. [6] 龚昂. GNSS单频单历元姿态测量算法关键技术研究[D]. 西安:空军工程大学, 2016:91-108. GONG A. Research on the key technology of single-epoch, single-frequency GNSS attitude determination[D]. Xi'an:Air Force Engineering University, 2016:91-108(in Chinese). [7] 李青松. 飞机进近着舰机载端自主完好性监测与多天线多约束定姿方法研究[D]. 长沙:国防科学技术大学, 2016:66-69. LI Q S. Research on airborne autonomous integrity monitoring for aircraft approach and landing and muti-constraint attitude determination methods with muti-Antenna[D]. Changsha:National University of Defense Technology, 2016:66-69(in Chinese). [8] ZHAO L, LI N, LI L, et al. Real-time GNSS-based attitude determination in the measurement domain[J]. Sensors, 2017, 17(2):2-15. [9] HAN H, WANG J, WANG J, et al. Reliable partial ambiguity resolution for single-frequency GPS/BDS and INS integration[J]. GPS Solutions, 2016, 21(1):1-14. [10] NARDO A, LI B, TEUNISSEN P J G. Partial ambiguity resolution for ground and space-based applications in a GPS+Galileo scenario:A simulation study[J]. Advances in Space Research, 2016, 57(1):30-45. [11] HU N, ZHANG H, SHI Y, et al. Research on fast RTK GNSS algorithm based on partial ambiguity resolution[C]//China Satellite Navigation Conference. Beijing:CSNC, 2017:481-491. [12] 崔建华, 程乃平. 一种基于天线布局的姿态测量算法研究[J]. 电子与信息学报, 2017, 39(2):459-465. CUI J H, CHENG N P. Research on an attitude determination algorithm based on antenna configuration[J]. Journal of Electronics and Information Technology, 2017, 39(2):459-465(in Chinese). [13] BALLAL T, BLEAKLEY C J. GNSS instantaneous ambiguity resolution and attitude determination exploiting the receiver antenna configuration[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(3):2061-2069. [14] YANG Y, MAO X, TIAN W. Rotation matrix method based on ambiguity function for GNSS attitude determination[J]. Sensors, 2016, 16(6):841. [15] NOWEL K, CELLMER S, KWASNIAK D. Mixed integer-real least squares estimation for precise GNSS positioning using a modified ambiguity function approach[J]. GPS Solutions, 2018, 22(1):2-11. [16] 庞春雷, 赵修斌, 卢艳娥, 等. 短基线约束条件下的整周模糊度二维搜索算法[J]. 中国空间科学技术, 2012, 6:43-48. PANG C L, ZHAO X B, LU Y E, et al, Planar search algorithm for ambiguity resolution with short baseline length constraint[J]. Chinese Space Science and Technology, 2012, 6:43-48(in Chinese). [17] GIORGI G, TEUNISSEN P J G. Multivariate GNSS attitude integrity:The role of affine onstraints[C]//International Association of Geodesy Symposia. Switzerland:Springer, 2015:1-7. [18] MIAO L J, SHI J. Model-based robust estimation and fault detection for MEMS-INS/GPS integrated navigation systems[J]. Chinese Journal of Aeronautics. 2014, 27(4):947-954. [19] YANG Y, MAO X, TIAN W. A novel method for low-cost MIMU aiding GNSS attitude determination[J]. Measurement Science & Technology, 2016, 27(7):075003. [20] GONG A, ZHAO X, PANG C, et al. GNSS single frequency, single epoch reliable attitude determination method with baseline vector constraint[J]. Sensors, 2015, 15(12):30093-30103. |