航空学报 > 2016, Vol. 37 Issue (12): 3793-3802   doi: 10.7527/S1000-6893.2016.0084

基于马尔科夫链的单站SAR海面场景宽幅高分成像算法

倪嘉成1, 张群1, 顾福飞2, 孙莉1, 霍文俊1   

  1. 1. 空军工程大学 信息与导航学院, 西安 710077;
    2. 中国卫星海上测控部, 江阴 214430
  • 收稿日期:2015-11-27 修回日期:2016-03-15 出版日期:2016-12-15 发布日期:2016-03-22
  • 通讯作者: 张群,Tel.:029-84791751,E-mail:zhangqunnus@gmail.com E-mail:zhangqunnus@gmail.com
  • 作者简介:倪嘉成,男,博士研究生。主要研究方向:SAR雷达信号处理,雷达成像。E-mail:littlenjc@sina.com;张群,男,博士,教授,博士生导师。主要研究方向:雷达信号与信息处理、雷达成像。Tel.:029-84791751,E-mail:zhangqunnus@gmail.com
  • 基金资助:

    国家自然科学基金(61501498);陕西省自然科学基础研究计划(2015JM6306);陕西省统筹创新工程-特色产业创新链(2015KTTSGY04-06)

Mono-static SAR HRWS imaging algorithm of sea surface based on Markov chain

NI Jiacheng1, ZHANG Qun1, GU Fufei2, SUN Li1, HUO Wenjun1   

  1. 1. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China;
    2. China Satellite Maritime Tracking and Control Department, Jiangyin 214430, China
  • Received:2015-11-27 Revised:2016-03-15 Online:2016-12-15 Published:2016-03-22
  • Supported by:

    National Natural Science Foundation of China (61501498); Nature Science Foundation Research Program of Shaanxi Province (2015JM6306); Coordinator Innovative Engineering Project of Shaanxi Province (2015KTTSGY04-06)

摘要:

针对单站合成孔径雷达(SAR)实现海面场景高分辨率宽测绘带(HRWS)成像问题,结合海面目标相对整个场景的稀疏特性,提出了一种基于马尔科夫链的单站SAR宽幅高分成像算法。算法将宽幅的海面场景分为不同子测绘带,首先发射少量脉冲对各子测绘带进行距离向成像,利用距离向成像结果获取场景内感兴趣目标的数量信息。然后计算雷达波束指向的马尔科夫状态转移概率,并按此概率控制雷达对不同测绘带进行扫描。获得不同测绘带的稀疏子孔径后进行压缩感知成像。提出的算法可以在相同合成孔径时间内实现多个测绘带的宽幅高分成像,最后的仿真实验验证了所提算法的有效性。

关键词: SAR成像, 压缩感知, 距离像, 马尔科夫链, 迭代阈值算法

Abstract:

This paper focuses on the problem of solving high resolution wide swath (HRWS) SAR imaging of sea surface using mono-static SAR and proposes a compressed sensing imaging method based on Markov chain. This method is inspired by the fact that target of sea surface usually owns a sparse distribution. Firstly, the wide swath sea scene is divided into several sub scenes. Secondly, a few pulses were used to generate a range profile, and the range profile is used to obtain the target number in each sub scenes. After that the radar scanning probability can be calculated using the target number. The radar then scan each sub scene based on the scanning probability. Thirdly, an improved compressed sensing algorithm is utilized to reconstruct each sub scenes; the whole wide swath image is united by putting all the sub scenes together. The proposed method can get a wide swath image without reducing the resolution of the radar. Finally, the effectiveness of the proposed method is proved by the simulation results.

Key words: SAR imaging, compressed sensing, range profile, Markov chain, Iterative thresholding algorithm

中图分类号: