[1] Yang H, Wang M, Guo L G, et al. 3D coupled thermo-mechanical FE modeling of blank size effects on the uniformity of strain and temperature distributions during hot rolling of titanium alloy large rings[J]. Computational Materials Science, 2008, 44(2): 611-621.[2] Liu D, Fu M J, Wan Z Y, et al. Rolling strategies in the rolling process of GH4169 alloy with rectangle cross-section ring[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1276-1280. (in Chinese) 刘东, 付明杰, 万自永, 等. GH4169合金矩形截面环轧制曲线的实验研究[J]. 航空学报, 2007, 28(5): 1276-1280.[3] Sun Z C, Yang H, Ou X Z. Effects of process parameters on microstructural evolution during hot ring rolling of AISI 5140 steel[J]. Computational Materials Science, 2010, 49(1): 134-142.[4] Qian D S, Pan Y. 3D coupled macro-microscopic finite element modelling and simulation for combined blank-forging and rolling process of alloy steel large ring[J]. Computational Materials Science, 2013, 70: 24-36.[5] Guo L G, Pan X, Yang H, et al. Effects of rotational speed of driving roll on microstructure evolution during hot ring rolling of as-cast 42CrMo steel[J]. Heavy Machinery, 2012(3): 59-64. (in Chinese) 郭良刚, 潘霞, 杨合, 等. 驱动辊转速对铸态42CrMo钢环件热辗轧微观组织的影响规律[J]. 重型机械, 2012(3): 59-64.[6] Zhang F, Li Y T, Qi H P, et al. Study on rule of microstructure evolution during hot ring rolling process of annular casting blank[J]. China Metal Forming Equipment & Manufacturing Technology, 2011(2): 96-99. (in Chinese) 张峰, 李永堂, 齐会萍, 等. 环形铸坯热辗扩成形微观组织演变规律研究[J]. 锻压装备与制造技术, 2011(2): 96-99.[7] Wang M, Yang H, Zhang C, et al. Microstructure evolution modeling of titanium alloy large ring in hot ring rolling[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12): 1427-1437.[8] Wang M, Yang H, Guo L G, et al. Simulation of microstructure evolution during hot ring rolling of large rings of titanium alloy based on 3D-FEM[J]. Journal of Plasticity Engineering, 2008, 15(6): 76-80. (in Chinese) 王敏, 杨合, 郭良刚, 等. 基于3D-FEM的大型钛环热辗扩成形微观组织演变仿真[J]. 塑性工程学报, 2008, 15(6): 76-80.[9] Zhu S, Yang H, Guo L G, et al. Investigation of deformation degree and initial forming temperature dependences of microstructure in hot ring rolling of TA15 titanium alloy by multi-scale simulations[J]. Computational Materials Science, 2012, 65: 221-229.[10] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2377-2386.[11] Fan X G. Study on microstructure evolution during isothermal local loading forming of large-scale integral complex component of titanium alloys[D]. Xi'an: Northwestern Polytechnical University, 2012. (in Chinese) 樊晓光. 钛合金复杂大件等温局部加载成形组织演变研究[D]. 西安: 西北工业大学, 2012.[12] Zhu S, Yang H, Guo L G, et al. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy[J]. Materials Characterization, 2012, 70: 101-110.[13] Guo L G, Yang H, Jin J C. Design method of blank sizes for radial-axial ring rolling[J]. Chinese Journal of Mechanical Engineering, 2010, 46(24): 1-9. (in Chinese) 郭良刚, 杨合, 金坚诚. 环件径轴向轧制毛坯尺寸设计方法[J]. 机械工程学报, 2010, 46(24): 1-9.[14] Wang M, Yang H, Sun Z C, et al. Analysis of mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM[J]. Journal of Materials Processing Technology, 2009, 209(7): 3384-3395.[15] Guo L G, Yang H. Towards a steady forming condition for radial-axial ring rolling[J]. International Journal of Mechanical Sciences, 2011, 53(4): 286-299.[16] Guo L G, Chen J H, Yang H, et al. Response rules of strain and temperature fields to roll sizes during hot rolling process of TC4 titanium alloy conical ring[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1463-1473. (in Chinese) 郭良刚, 陈建华, 杨合, 等. TC4钛合金锥形环热辗轧应变及温度场对轧辊尺寸的响应规律[J].航空学报, 2013, 34(6): 1463-1473. |