航空学报 > 2013, Vol. 34 Issue (5): 1129-1139   doi: 10.7527/S1000-6893.2013.0202

基于弹性网稀疏编码的空间目标识别

史骏1,2, 姜志国1,2, 冯昊1,2, 张浩鹏1,2, 孟钢3   

  1. 1. 北京航空航天大学 宇航学院, 北京 100191;
    2. 数字媒体北京市重点实验室, 北京 100191;
    3. 北京遥感信息研究所, 北京 100191
  • 收稿日期:2012-06-11 修回日期:2012-12-19 出版日期:2013-05-25 发布日期:2013-01-09
  • 通讯作者: 姜志国 男, 博士, 教授, 博士生导师。主要研究方向: 目标检测、 跟踪与识别、 遥感图像处理和医学图像分析。 Tel: 010-82338061 E-mail: jiangzg@buaa.edu.cn E-mail:jiangzg@buaa.edu.cn
  • 作者简介:史骏 男, 博士研究生。主要研究方向: 模式识别、 机器学习和计算机视觉。 Tel: 010-82338061 E-mail: chris.shi331@gmail.com;姜志国 男, 博士, 教授, 博士生导师。主要研究方向: 目标检测、 跟踪与识别、 遥感图像处理和医学图像分析。 Tel: 010-82338061 E-mail: jiangzg@buaa.edu.cn;冯昊 男, 博士研究生。主要研究方向: 图像处理、 机器学习和计算机视觉。 Tel: 010-82338061 E-mail: fenghao@sa.buaa.edu.cn;张浩鹏 男, 博士研究生。主要研究方向: 图像处理、 机器学习和计算机视觉。 Tel: 010-82338061 E-mail: buaazhp@126.com;孟钢 男, 博士, 工程师。主要研究方向: 图像处理、 模式识别、 机器学习和嵌入式系统。 E-mail: menggangmark@126.com
  • 基金资助:

    国家自然科学基金(61071137, 61071138, 61027004);国家"973"计划(2010CB327900)

Elastic Net Sparse Coding-based Space Object Recognition

SHI Jun1,2, JIANG Zhiguo1,2, FENG Hao1,2, ZHANG Haopeng1,2, MENG Gang3   

  1. 1. School of Astronautics, Beihang University, Beijing 100191, China;
    2. Beijing Key Laboratory of Digital Media, Beijing 100191, China;
    3. Beijing Institute of Remote Sensing Information, Beijing 100191, China
  • Received:2012-06-11 Revised:2012-12-19 Online:2013-05-25 Published:2013-01-09
  • Supported by:

    National Natural Science Foundation of China (61071137, 61071138, 61027004); National Basic Research Program of China (2010CB327900)

摘要:

传统的特征袋(BoF)模型在目标识别过程中假设每个局部特征点只关联特征词典中一个视觉单词。此外,l1范数约束下的稀疏编码对于具有较强成对相关性的特征通常只选择一个特征,而不关注哪一个特征被选择。本文提出一种基于弹性网稀疏编码的特征袋模型。该模型利用尺度不变特征变换(SIFT)特征描述子构建特征字典,再通过弹性网回归模型求解每个描述子所对应的稀疏系数向量,最后将目标图像内的稀疏系数向量合并用于分类。与传统的特征袋模型和基于l1范数稀疏编码的特征袋模型相比,该模型有较好的识别性能,并对视角变化具有较强的鲁棒性。在空间目标图像数据库上的实验验证了该模型的有效性。

关键词: 特征袋, l1范数约束, 稀疏编码, 弹性网回归, 空间目标识别, 特征提取

Abstract:

The traditional bag-of-features (BoF) model for object recognition assumes each local feature point is related to only one visual word. Besides, sparse coding with l1-norm constraint generally selects only one feature without concern for which one is selected. A novel bag-of-features model based on elastic net sparse coding is presented in this paper. The model uses scale invariant feature transform (SIFT) feature descriptors to construct a feature dictionary, and then applies an elastic net regression model to the solution of sparse-coefficient vectors. Finally the sparse-coefficient vectors in each object image are pooled for classification. Compared with the conventional BoF model and the BoF model based on l1-norm sparse coding, our model achieves better recognition performance and is more robust to the variation of viewpoints. Experiments on the space object image database demonstrate the effectiveness of the proposed model.

Key words: bag-of-features, l1-norm constraint, sparse coding, elastic net regression, space object recognition, feature extraction

中图分类号: