| [1] |
DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
|
| [2] |
罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 028822.
|
|
LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 028822 (in Chinese).
|
| [3] |
张文凯, 刘文杰, 孙显, 等. 多源特征自适应融合网络的高分遥感影像语义分割[J]. 中国图象图形学报, 2022, 27(8): 2516-2526.
|
|
ZHANG W K, LIU W J, SUN X, et al. Multi-source features adaptation fusion network for semantic segmentation in high-resolution remote sensing images[J]. Journal of Image and Graphics, 2022, 27(8): 2516-2526 (in Chinese).
|
| [4] |
杨俊俐, 姜志国, 周全, 等. 基于条件随机场的遥感图像语义标注[J]. 航空学报, 2015, 36(9): 3069-3081.
|
|
YANG J L, JIANG Z G, ZHOU Q, et al. Remote sensing image semantic labeling based on conditional random field[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3069-3081 (in Chinese).
|
| [5] |
HUA Y S, MARCOS D, MOU L C, et al. Semantic segmentation of remote sensing images with sparse annotations[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 8006305.
|
| [6] |
SONG N, ZHANG C, LIN G S. Few-shot open-set recognition using background as unknowns[C]∥Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 5970-5979.
|
| [7] |
ZHANG Y, YANG J W, TIAN J, et al. Modality-aware mutual learning for multi-modal medical image segmentation[M]∥Medical Image Computing and Computer Assisted Intervention-MICCAI 2021. Cham: Springer International Publishing, 2021: 589-599.
|
| [8] |
文贡坚, 王润生. 从航空遥感图像中自动提取主要道路[J]. 软件学报, 2000, 11(7): 957-964.
|
|
WEN G J, WANG R S. Automatic extraction of main roads from aerial remote sensing images[J]. Journal of Software, 2000, 11(7): 957-964 (in Chinese).
|
| [9] |
SPASEV V, DIMITROVSKI I, KITANOVSKI I, et al. Semantic segmentation of remote sensing images: definition, methods, datasets and applications[M]∥ICT Innovations 2023. Learning: Humans, Theory, Machines, and Data. Cham: Springer Nature Switzerland, 2024: 127-140.
|
| [10] |
WANG K X, LIEW J H, ZOU Y T, et al. PANet: Few-shot image semantic segmentation with prototype alignment[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 9196-9205.
|
| [11] |
FAN Q, PEI W J, TAI Y W, et al. Self-support few-shot semantic segmentation[M]∥Computer Vision-ECCV 2022. Cham: Springer Nature Switzerland, 2022: 701-719.
|
| [12] |
PENG B H, TIAN Z T, WU X Y, et al. Hierarchical dense correlation distillation for few-shot segmentation[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 23641-23651.
|
| [13] |
WANG J, LI J Y, CHEN C, et al. Adaptive FSS: a novel few-shot segmentation framework via prototype enhancement[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 5463-5471.
|
| [14] |
VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18(2): 77-95.
|
| [15] |
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
|
| [16] |
KANG D, CHO M. Integrative few-shot learning for classification and segmentation[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 9969-9980.
|
| [17] |
TIAN Z T, LAI X, JIANG L, et al. Generalized few-shot semantic segmentation[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 11553-11562.
|
| [18] |
HAJIMIRI S, BOUDIAF M, AYED I BEN, et al. A strong baseline for generalized few-shot semantic segmentation[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 11269-11278.
|
| [19] |
LIU S N, ZHANG Y H, QIU Z F, et al. Learning orthogonal prototypes for generalized few-shot semantic segmentation[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 11319-11328.
|
| [20] |
LIU W D, WU Z H, ZHAO Y, et al. Harmonizing base and novel classes: A class-contrastive approach for generalized few-shot segmentation[J]. International Journal of Computer Vision, 2024, 132(4): 1277-1291.
|
| [21] |
BRONI-BEDIAKO C, XIA J S, SONG J, et al. Generalized few-shot semantic segmentation in remote sensing: Challenge and benchmark[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 8003905.
|
| [22] |
LI Z H, LU F X, ZOU J Q, et al. Generalized few-shot meets remote sensing: Discovering novel classes in land cover mapping via hybrid semantic segmentation framework[C]∥2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2024: 2744-2754.
|
| [23] |
GAO T Y, AO W, WANG X G, et al. Enrich, distill and fuse: Generalized few-shot semantic segmentation in remote sensing leveraging foundation model’s assistance[C]∥2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2024: 2771-2780.
|
| [24] |
ZHU J G, TANG S X, CHEN D P, et al. Complementary relation contrastive distillation[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 9256-9265.
|
| [25] |
赵翔, 李洪双. 基于交叉熵和空间分割的全局可靠性灵敏度分析[J]. 航空学报, 2018, 39(2): 221570.
|
|
ZHAO X, LI H S. Global reliability sensitivity analysis using cross entropy method and space partition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 221570 (in Chinese).
|
| [26] |
XIA J S, YOKOYA N, ADRIANO B, et al. Open-EarthMap: A benchmark dataset for global high-resolution land cover mapping[C]∥2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2023: 6243-6253.
|
| [27] |
SYED W Z, ARORA A, GUPTA A, et al. iSAID: A larg-e-scale dataset for instance segmentation in aerial images[DB/OL].arXiv preprint, 1905.12886, 2019.
|
| [28] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
| [29] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002.
|