| [1] |
杨利鑫, 李彦斌, 费庆国. 空天飞行器电磁功能结构研究进展及展望[J]. 航空学报, 2025, 46(18): 331808.
|
|
YANG L X, LI Y B, FEI Q G. Research progress and prospect of electromagnetic functional structure of aerospace vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 331808 (in Chinese).
|
| [2] |
SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28.
|
| [3] |
ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646.
|
| [4] |
李俊宁, 冯志海, 张大海, 等. 可重复使用热防护材料研究进展[J]. 宇航材料工艺, 2024, 54(2): 1-10.
|
|
LI J N, FENG Z H, ZHANG D H, et al. Reusable thermal protection materials: A review[J]. Aerospace Materials & Technology, 2024, 54(2): 1-10 (in Chinese).
|
| [5] |
PETERS A B, ZHANG D J, CHEN S, et al. Materials design for hypersonics[J]. Nature Communications, 2024, 15: 3328.
|
| [6] |
WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
|
| [7] |
袁慎芳. 结构健康监控[M]. 北京: 国防工业出版社, 2007.
|
|
YUAN S F. Structural health monitoring and damage control[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
|
| [8] |
UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356.
|
| [9] |
黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 1-35.
|
|
HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 1-35 (in Chinese).
|
| [10] |
宋俊柏, 吴振强, 刘武刚, 等. 带胶应变隔离垫对防热瓦太赫兹无损检测的影响分析[J]. 工程与实验, 2024, 64(3): 21-23, 49.
|
|
SONG J B, WU Z Q, LIU W G, et al. Effect of strain isolation pad with adhesive on terahertz nondestructive test of thermal protection system[J]. Engineering & Test, 2024, 64(3): 21-23, 49 (in Chinese).
|
| [11] |
周洁洁, 孙陈诚, 陈育阳, 等. 陶瓷防热瓦用应变隔离垫的制备及性能[J]. 宇航材料工艺, 2017, 47(3): 61-63.
|
|
ZHOU J J, SUN C C, CHEN Y Y, et al. Preparation and properties of strain isolation pad for ceramic insulating tile[J]. Aerospace Materials & Technology, 2017, 47(3): 61-63 (in Chinese).
|
| [12] |
袁慎芳, 刘凌峰, 邱雷, 等. C/C热防护结构弹性波仿真分析方法及损伤对弹性波的影响[J]. 复合材料学报, 2019, 36(10): 2448-2457.
|
|
YUAN S F, LIU L F, QIU L, et al. Elastic wave simulation analysis method and damage effect on elastic wave in C/C thermal protection structures[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2448-2457 (in Chinese).
|
| [13] |
KUNDU T, DAS S, JATA K V. Health monitoring of a thermal protection system using lamb waves[J]. Structural Health Monitoring, 2009, 8(1): 29-45.
|
| [14] |
郑辉, 邱雷, 袁慎芳, 等. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报, 2022, 43(8): 225659.
|
|
ZHENG H, QIU L, YUAN S F, et al. Experimental method of guided wave monitoring for high temperature airflow damage of C/C thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225659 (in Chinese).
|
| [15] |
张佳奇, 刘明辉, 刘科海, 等. 基于超声导波的返回舱热防护结构烧蚀层厚度监测方法[J]. 航天器环境工程, 2019, 36(5): 487-494.
|
|
ZHANG J Q, LIU M H, LIU K H, et al. A method based on ultrasonic guidedwavefor monitoringthe thickness of ablation layer for thermal protection structures of re-entry capsules[J]. Spacecraft Environment Engineering, 2019, 36(5): 487-494 (in Chinese).
|
| [16] |
CHINNARAJ R K, HONG S M, KIM H S, et al. Ablation experiments of ultra-high-temperature ceramic coating on carbon-carbon composite using ICP plasma wind tunnel[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(4): 889-905.
|
| [17] |
DARYABEIGI K. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating[J]. Journal of Spacecraft and Rockets, 2002, 39(4): 509-514.
|
| [18] |
LEIDERMAN R, FIGUEROA J C, BRAGA A M B, et al. Scattering of ultrasonic guided waves by heterogeneous interfaces in elastic multi-layered structures[J]. Wave Motion, 2016, 63: 68-82.
|
| [19] |
LOUKKAL A, LEMATRE M, BAVENCOFFE M, et al. Modeling and numerical study of the influence of imperfect interface properties on the reflection coefficient for isotropic multilayered structures[J]. Ultrasonics, 2020, 103: 106099.
|
| [20] |
宋国荣, 宋协宏, 吕炎, 等. 基于超声透射特性的复合材料粘接结构粘接质量预测[J]. 机械工程学报, 2024, 60(4): 230-238.
|
|
SONG G R, SONG X H, LÜ Y, et al. Prediction of bonding quality of composite bonded structures based on ultrasonic transmission characteristics[J]. Journal of Mechanical Engineering, 2024, 60(4): 230-238 (in Chinese).
|
| [21] |
QUINTANILLA F H, FAN Z, LOWE M J S, et al. Guided waves’ dispersion curves in anisotropic viscoelastic single-and multi-layered media[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2183): 20150268.
|
| [22] |
RAMADAS C, BALASUBRAMANIAM K, HOOD A, et al. Modelling of attenuation of Lamb waves using Rayleigh damping: Numerical and experimental studies[J]. Composite Structures, 2011, 93(8): 2020-2025.
|
| [23] |
GRESIL M, GIURGIUTIU V. Guided wave propagation in composite laminates using piezoelectric wafer active sensors[J]. The Aeronautical Journal, 2013, 117(1196): 971-995.
|
| [24] |
ROSE J L. Ultrasonic waves in solid media[M]. Cambridge: Cambridge University Press, 1999.
|
| [25] |
DALTON R P. Propagation of guided waves in aircraft structure[J]. AIP Conference Proceedings, 2000, 509(1): 225-232.
|
| [26] |
GRESIL M, GIURGIUTIU V. Guided wave propagation in carbon composite laminate using piezoelectric wafer active sensors[J]. Health Monitoring of Structural and Biological Systems 2013, 2013, 8695: 869525.
|
| [27] |
GRESIL M, GIURGIUTIU V. Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(16): 2151-2169.
|
| [28] |
阎峻, 王小文, 余艳, 等. 阻尼硅橡胶的研究进展[J]. 功能材料, 2025, 56(1): 1041-1049, 1087.
|
|
YAN J, WANG X W, YU Y, et al. Research progress of damping silicone rubber[J]. Journal of Functional Materials, 2025, 56(1): 1041-1049, 1087 (in Chinese).
|
| [29] |
任志英, 尧杰程, 黄伟, 等. 金属橡胶-硅橡胶复合阻尼结构的减振性能[J]. 振动与冲击, 2022, 41(24): 234-240.
|
|
REN Z Y, YAO J C, HUANG W, et al. Performance of the composite damping damper structure compose of metal rubber and silicone rubber[J]. Journal of Vibration and Shock, 2022, 41(24): 234-240 (in Chinese).
|
| [30] |
VIVEK E K, PANDEY A K, VEERA SESHA KUMAR C, et al. Dynamic characterization of an elastomer pad for vibration isolation[C]∥Recent Advances in Mechanics of Functional Materials and Structures. Singapore: Springer, 2024: 165-176.
|