收稿日期:
2023-10-07
修回日期:
2023-10-08
接受日期:
2023-10-18
出版日期:
2024-03-15
发布日期:
2023-11-07
通讯作者:
曹志鹏
E-mail:caozhipenggte@163.com
基金资助:
Zhipeng CAO(), Yongming WANG, Longbo ZHAO, Chaobin GUAN, Xiao NIU, Chen CHEN
Received:
2023-10-07
Revised:
2023-10-08
Accepted:
2023-10-18
Online:
2024-03-15
Published:
2023-11-07
Contact:
Zhipeng CAO
E-mail:caozhipenggte@163.com
Supported by:
摘要:
提高增压比是未来涡扇发动机实现低耗油率需求的关键途径,而级数少、重量轻、长度短的高负荷轴流增压系统一直是研究重点。小展弦比复合掠弯能够有效控制超声速流动损失以及大折转角下的流动分离,是高负荷设计技术的重点发展方向。本文在大前掠带箍风扇基础上,开展了高负荷两级风扇超跨声速级间流动匹配研究,发展了全新的小展弦比、三维掠弯设计方法;基于试验结果完成了一维、二维特性模型修正,采用优化方法建立了全工况性能匹配调节规律,并完成了优化调节试验验证。以此为基础,为进一步提高负荷,开展小展弦比串列叶片前段减速增压、后段折转增压概念原理设计和试验验证;运用数值模拟方式进行了动叶自循环吸附验证;完成了低反力度气动布局设计和静叶吸附的试验验证。最后,初步讨论了可变流量Flade叶片构型面临的高效率全超声速动叶设计、环内壁低损失超声速流动控制等技术挑战,以及柔性叶片和智能材料相融合的造型设计方法。
中图分类号:
曹志鹏, 王永明, 赵龙波, 关朝斌, 牛潇, 陈晨. 复合掠弯轴流增压设计技术[J]. 航空学报, 2024, 45(5): 529676-529676.
Zhipeng CAO, Yongming WANG, Longbo ZHAO, Chaobin GUAN, Xiao NIU, Chen CHEN. Design technique of swept and bowed axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529676-529676.
1 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
2 | 赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术, 2022, 50(6): 19-25. |
ZHAO B J, CHEN S T, LI D X, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defence Technology, 2022, 50(6): 19-25 (in Chinese). | |
3 | 王鹏. 新一代战斗机及其动力发展解析[J]. 航空动力, 2020(6): 12-16. |
WANG P. Development analysis of next generation fighters and powerplants[J]. Aerospace Power, 2020(6): 12-16 (in Chinese). | |
4 | 离子鱼. 从航空技术发展分析歼-10的后续改进[J]. 舰载武器, 2008(3): 28-36. |
LI Z Y. Development of aeronautical technique and follow-up improvement of Jian-10[J]. Shipborne Weapons, 2008(3): 28-36 (in Chinese). | |
5 | 梁春华, 索德军, 孙明霞. 美国第6代战斗机发动机关键技术综述[J]. 航空发动机, 2016, 42(2): 93-97. |
LIANG C H, SUO D J, SUN M X. A review on the key technologies of the sixth generation fighter engines in the US[J]. Aeroengine, 2016, 42(2): 93-97 (in Chinese). | |
6 | 孙明霞,梁春华,索德军,等. 美国第6代战斗机发动机进展分析[J].航空发动机,2021,47(3):1-7. |
SUN Mingxia, LIANG Chunhua, SUO Dejun, et al. Progress analysis of US 6th generation fighter engine[J]. Aviation Engine, 2021,47 (3): 1-7 (in Chinese). | |
7 | 刘永泉. 国外战斗机发动机的发展与研究[M]. 北京: 航空工业出版社, 2016. |
LIU Y Q. Development and investigation of foreign fighter English[M]. Beijing: Aviation Industry Press, 2016 (in Chinese). | |
8 | 龙前广. 双外涵变循环发动机控制计划研究[D]. 南京: 南京航空航天大学, 2021. |
LONG Q G. Research on the control plan of double bypass variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
9 | 王强, 郑日恒, 陈懋章. 航空发动机科学技术的发展与创新[J]. 科技导报, 2021, 39(3): 59-70. |
WANG Q, ZHENG R H, CHEN M Z. Development and innovation of aeroengine science and technology[J]. Science & Technology Review, 2021, 39(3): 59-70 (in Chinese). | |
10 | 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017. |
JIA L Y. Research on variable cycle engine control schedule design[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
11 | 梁春华. 未来的航空涡扇发动机技术[J]. 航空发动机, 2005, 31(4): 54-58. |
LIANG C H. Future aircraft turbofan engine technologies[J]. Aeroengine, 2005, 31(4): 54-58 (in Chinese). | |
12 | 曹传军, 刘天一, 朱伟, 等. 民用大涵道比涡扇发动机高压压气机技术进展[J]. 航空学报, 2023, 44(12): 6-23. |
CAO C J, LIU T Y, ZHU W, et al. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 6-23 (in Chinese). | |
13 | 张子涵. 跨音速压气机预压缩叶片设计方法与气动性能研究[D].哈尔滨:哈尔滨工业大学, 2022. |
ZHANG Z H. Design method and aerodynamic performance study of pre compressed blades for transonic compressors [D]. Harbin: Harbin Institute of Technology, 2022. | |
14 | SELLIN M, PUTERBAUGH S, COPENHAVER W. Tip shock structures in transonic compressor rotors: AIAA-1993-1869[R]. Reston: AIAA, 1993. |
15 | 蔡娜, 钟芳源. 轴流式弯掠动叶变工况气动: 声学性能的实验研究[J]. 工程热物理学报, 1996, 17(3): 280-285. |
CAI N, ZHONG F Y. An experiment on aerodynamic-aeroacoustic performance for skewed-swept rotor blading of axial flow fan[J]. Journal of Engineering Thermophysics, 1996, 17(3): 280-285 (in Chinese). | |
16 | 欧阳华, 钟芳源. 叶轮机械气动噪声及周向前弯动叶降噪技术的研究[J]. 风机技术, 2002, 44(5): 11-15. |
OUYANG H, ZHONG F Y. Aeroacoustic research on impeller machine and denoise design with skewed blade[J]. Compressor Blower & Fan Technology, 2002, 44(5): 11-15 (in Chinese). | |
17 | 茅晓晨, 刘波, 张国臣, 等. 复合弯掠优化对跨声速压气机性能影响的研究[J]. 推进技术, 2015, 36(7): 996-1004. |
MAO X C, LIU B, ZHANG G C, et al. Effectiveness of composite optimization of lean and sweep on transonic compressor performance[J]. Journal of Propulsion Technology, 2015, 36(7): 996-1004 (in Chinese). | |
18 | 张鹏, 刘波, 毛晓晨, 等. 三维造型和非轴对称端壁在跨声速压气机中的应用[J]. 推进技术, 2016, 37(2): 250-257. |
ZHANG P, LIU B, MAO X C, et al. Application of 3D blading and non-axisymmetric endwall in a transonic compressor[J]. Journal of Propulsion Technology, 2016, 37(2): 250-257 (in Chinese). | |
19 | 毛明明. 跨声速轴流压气机动叶弯和掠的数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
MAO M M. Numerical investigation of bowed and swept rotor in a transonic axial compressor[D]. Harbin: Harbin Institute of Technology, 2008 (in Chinese). | |
20 | 袁巍, 陆亚钧, 周盛. 高负荷风扇级的特性实验与流场分析[J]. 推进技术, 2004, 25(4): 377-380. |
YUAN W, LU Y J, ZHOU S. Flow field analysis on the characteristic of a high load compressor fan[J]. Journal of Propulsion Technology, 2004, 25(4): 377-380 (in Chinese). | |
21 | 程荣辉, 周拜豪. 掠形风扇技术研究[J]. 燃气涡轮试验与研究, 1998, 11(2): 12-17. |
CHENG R H, ZHOU B H. Research on swept fan technology[J]. Gas Turbine Experiment and Research, 1998, 11(2): 12-17 (in Chinese). | |
22 | 刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8): 2563-2576. |
LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576 (in Chinese). | |
23 | KERREBROCK J L, EPSTEIN A H, MERCHANT A A,et al. Design and test of an aspirated counter-rotating fan[J]. Journal of Turbomachinery,2008,130(2):293-302. |
24 | 葛正威, 葛治美, 朱俊强, 等. 吸附式跨声速压气机叶栅流场数值模拟[J]. 航空动力学报, 2007, 22(8): 1365-1370. |
GE Z W, GE Z M, ZHU J Q, et al. Numerical investigation of boundary layer suction in an axial transonic compressor cascade[J]. Journal of Aerospace Power, 2007, 22(8): 1365-1370 (in Chinese). | |
25 | 季路成, 项林, 邢秀清, 等. 由两个风扇转子设计得到的启示[J]. 工程热物理学报, 2001, 22(1): 48-50. |
JI L C, XIANG L, XING X Q, et al. Suggestions obtained from designs of two highly loaded fan rotors[J]. Journal of Engineering Thermophysics, 2001, 22(1): 48-50 (in Chinese). | |
26 | 齐亦农, 李承辉, 赵刚. 高马赫数、高负荷双级风扇转子叶尖区域激波结构测量[J]. 燃气涡轮试验与研究, 2002, 15(3): 33-37. |
QI Y N, LI C H, ZHAO G. Measurement of rotor tip shock wave structure of a two stage fan with high Mach number and high load[J]. Gas Turbine Experiment and Research, 2002, 15(3): 33-37 (in Chinese). | |
27 | 陈浮,赵桂杰,宋彦萍,等.叶片弯、掠对压气机端壁流动的影响[J].工程热物理学报,2004(2):211-215. |
CHEN F, ZHAO G J, SONG Y P, et al. The influence of blade bending and sweeping on the end wall flow of a compressor [J]. Journal of Engineering Thermophysics, 2004 (2): 211-215 (in Chinese). | |
28 | WENNERSTROM A J. Investigation of a 1500 FT/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio[R]. Washington, D.C.: NASA, 1976. |
29 | SHAN P, GUI X M. Final report for the design and experiment study of a high loading single-stage model fan ATS-2 with a backward swept rotor: GF-A0041935[R]. Beijing: Beijing University of Aeronautics and Astronautics, 2000. |
30 | 陈葆实, 胡国荣, 魏玉冰, 等. 高马赫数、高负荷单级风扇设计和试验研究[J]. 航空发动机, 2000, 26(3): 28-35. |
CHEN B S, HU G R, WEI Y B, et al. Design and experimental study of single-stage fan with high Mach number and high load[J]. Aeroengine, 2000, 26(3): 28-35 (in Chinese). | |
31 | YU Q, LI Q S, LI L. The experimental researches on improving operating stability of a single stage transonic fan[R]. New York: ASME, 2009. |
32 | 刘宝杰, 邹正平, 严明, 等. 叶轮机计算流体动力学技术现状与发展趋势[J]. 航空学报, 2002, 23(5): 394-404. |
LIU B J, ZOU Z P, YAN M, et al. Present status and future development of CFD in turbomachinery[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 394-404 (in Chinese). | |
33 | 赵斌, 徐朋飞, 刘宝杰. 高负荷风扇气动设计: 转子叶尖参数选取分析[J]. 航空动力学报, 2010, 25(11): 2564-2570. |
ZHAO B, XU P F, LIU B J. Aerodynamic design of highly loaded fan: Analysis of rotor tip parameter selection[J]. Journal of Aerospace Power, 2010, 25(11): 2564-2570 (in Chinese). | |
34 | WENNERSTROM A J. Design of highly loaded axial-flow fans and compressors[M]. Wilder: Concepts ETI Incorporation, 2000. |
35 | 曹志鹏, 兰发祥, 张旭, 等. 风扇转子箍环与机匣间容腔的全三维数值模拟[J]. 燃气涡轮试验与研究, 2013, 26(2): 24-27. |
CAO Z P, LAN F X, ZHANG X, et al. Numerical investigation on tip ring-cavity of fan rotor[J]. Gas Turbine Experiment and Research, 2013, 26(2): 24-27 (in Chinese). | |
36 | 尹红顺, 周拜豪, 余华蔚, 等. 高压比串列风扇气动设计[J]. 燃气涡轮试验与研究, 2014, 27(6): 1-7. |
YIN H S, ZHOU B H, YU H W, et al. Aerodynamic design of high pressure ratio tandem fan[J]. Gas Turbine Experiment and Research, 2014, 27(6): 1-7 (in Chinese). | |
37 | 曹志鹏, 尹红顺, 周拜豪, 等. 超声速串列静叶设计[J]. 燃气涡轮试验与研究, 2015, 28(2): 1-6. |
CAO Z P, YIN H S, ZHOU B H, et al. Design of supersonic tandem stator[J]. Gas Turbine Experiment and Research, 2015, 28(2): 1-6 (in Chinese). | |
38 | 安利平, 黄萍. 一种基于计算几何控制无量纲参数的叶片造型方法[J]. 燃气涡轮试验与研究, 2013, 26(4): 8-12, 17. |
AN L P, HUANG P. Innovative blading method based on calculating geometry[J]. Gas Turbine Experiment and Research, 2013, 26(4): 8-12, 17 (in Chinese). | |
39 | 黄萍, 安利平. 基于Bzéier曲线的新型叶片造型技术研究[J]. 燃气涡轮试验与研究, 2008, 21(2): 19-23. |
HUANG P, AN L P. Research of new blading technique using the Bézier curve[J]. Gas Turbine Experiment and Research, 2008, 21(2): 19-23 (in Chinese). | |
40 | MCGLUMPHY J. Numerical investigation of subsonic axial-flow tandem compressor blades[D]. Virginia: Virginia Polytechnic Institute&State University, 2007. |
41 | MCGLUMPHY J, NG W F, WELLBORN S R, et al. Numerical investigation of tandem airfoils for subsonic axial-flow compressor blades[J]. Journal of Turbomachinery, 2009, 131(2): 174-181. |
42 | MCGLUMPHY J, NG W F, WELLBORN S R, et al. 3D numerical investigation of tandem airfoils for a core compressor rotor[J]. Journal of Turbomachinery, 2010, 132(3): 031009. |
43 | BAMMERT K, STAUDE R. Optimization for rotor blades of tandem design for axial flow compressors[J]. Journal of Engineering for Gas Turbines and Power, 1980, 102(2): 369-375. |
44 | BAMMERT K, BEELTE H. Investigations of an axial flow compressor with tandem cascades[J]. Journal of Engineering for Gas Turbines and Power, 1980, 102(4): 971-977. |
45 | BAMMERT K, STAUDE R. New features in the design of axial-flow compressors with tandem blades[R]. New York: ASME, 2015. |
46 | SAHA U K, ROY B. Experimental investigations on tandem compressor cascade performance at low speeds[J]. Experimental Thermal and Fluid Science, 1997, 14(3): 263-276. |
47 | 曹志鹏, 王永明, 尹红顺, 等. 超声速串列静叶积叠优化分析[J]. 航空科学技术, 2015, 26(5): 81-88. |
CAO Z P, WANG Y M, YIN H S, et al. Stacking optimization analysis of supersonic tandem stator[J]. Aeronautical Science & Technology, 2015, 26(5): 81-88 (in Chinese). | |
48 | 曹志鹏, 赵龙波, 王靖宇, 等. 自循环吸附动叶设计原理及数值模拟分析[J]. 航空学报, 2017, 38(9): 521098. |
CAO Z P, ZHAO L B, WANG J Y, et al. Design principles and numerical simulation analysis of self-circulating aspirated rotor[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 521098 (in Chinese). | |
49 | KERREBROCK J L, REIJNEN D P, ZIMINSKY W S, et al. Aspirated compressor[R]. New York: ASME, 1997. |
50 | DAY I J. Active suppression of rotating stall and surge in axial compressors[R]. New York: ASME, 2015. |
51 | 关朝斌, 曹志鹏, 尹红顺, 等. 动叶自适应吸附技术分析[J]. 航空科学技术, 2017, 28(11): 54-61. |
GUAN C B, CAO Z P, YIN H S, et al. Analysis of technology on self-adaptive aspirated rotor[J]. Aeronautical Science & Technology, 2017, 28(11): 54-61 (in Chinese). | |
52 | 童志庭, 聂超群, 朱俊强. 微喷气提高轴流压气机稳定性的研究[J]. 工程热物理学报, 2006, 27(S1): 121-124. |
TONG Z T, NIE C Q, ZHU J Q. Investigation on miro tip injection improving the stability of an anxial compressor[J]. Journal of Engineering Thermophysics, 2006, 27(S1): 121-124 (in Chinese). | |
53 | WADIA A R, MIEIKE M J. Self bleeding rotor blade: US05480284A[P]. 1996-01-02. |
54 | WANG S T, QIANG X Q, LIN W C, et al. Highly-loaded low-reaction boundary layer suction axial flow compressor[R]. New York: ASME, 2009. |
55 | LAROSILIERE L, WOOD J R, HATHAWAY M, et al. Aerodynamic design study of advanced multistage axial compressor[R]. Washington, D.C.: NASA, 2002. |
56 | 张龙新. 高速多级低反力度压气机气动设计方法及其内部流动研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
ZHANG L X. On the design method and inner flow of high speed multi-stage low reaction aspirated compressor[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
57 | DICKENS T, DAY I. The design of highly loaded axial compressors[R]. New York: ASME, 2010. |
58 | KERREBROCK J L, DRELA M, MERCHANT A A, et al. A family of designs for aspirated compressors[R]. New York: ASME, 2014. |
59 | SCHULER B J, KERREBROCK J L, MERCHANT A A, et al. Design, analysis, fabrication and test of an aspirated fan stage[R]. New York: ASME, 2014. |
60 | MERCHANT A, KERREBROCK J L, ADAMCZYK J J, et al. Experimental investigation of a high pressure ratio aspirated fan stage[R]. New York: ASME, 2008. |
61 | ZHANG L X, DU X, LIU X, et al. 3D unsteady simulation of a low speed low-reaction aspirated compressor[R]. New York: ASME, 2016. |
62 | WANG S T, QIANG X Q, LIN W C, et al. A study of parameter selection principle and internal flow mechanism in a multi-stage low-reaction axial flow compressor[R]. New York: ASME, 2009. |
[1] | 张杰, 李王斌, 王争取, 潘金柱, 卜忱. 小展弦比飞翼标模跨声速横向失稳运动[J]. 航空学报, 2022, 43(11): 526340-526340. |
[2] | 王延灵, 卜忱, 杨文, 沈彦杰, 冯帅. 小展弦比飞翼大迎角状态空间气动力建模[J]. 航空学报, 2021, 42(7): 124539-124539. |
[3] | 李林;王立新. 小展弦比飞翼布局作战飞机偏航轴飞行品质评定[J]. 航空学报, 2009, 30(6): 972-978. |
[4] | 孔轶男;王立新;王光学;洪俊武. 小展弦比飞翼布局飞机横向涡流控制气动机理[J]. 航空学报, 2009, 30(5): 806-811. |
[5] | 马超;李林;王立新. 小展弦比飞翼布局作战飞机可控性设计方法[J]. 航空学报, 2008, 29(4): 788-794. |
[6] | 李林;马超;王立新. 小展弦比飞翼布局飞机稳定特性[J]. 航空学报, 2007, 28(6): 1312-1317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学