1 |
ICAO. Annex 10-aeronautical telecommunications Volume Ι radio navigation aids (six edition) [S]. Montreal Canada: International Civil Aviation Organization, 2018: 24-30.
|
2 |
李琛, 周晨, 王君明, 等. 基于经验电离层模型的短波时差定位理论分析[J]. 系统工程与电子技术, 2023, 45(7): 1911-1919.
|
|
LI C, ZHOU C, WANG J M, et al. Theoretical analysis of shortwave TDOA geolocation based on empirical ionospheric model[J]. Systems Engineering and Electronics, 2023, 45(7): 1911-1919 (in Chinese).
|
3 |
FELTENS J, SCHAER S. IGS Products for the Ionosphere[C]∥Proceeding of the IGS AC Workshop. Piscataway: IEEE Press, 1998: 2345-2356.
|
4 |
FELTENS J. The activities of the ionosphere working group of the international GPS service (IGS)[J]. GPS Solutions, 2003, 7(1): 41-46.
|
5 |
倪育德, 陈楚佳. 基于HHT的Ⅱ/Ⅲ类GBAS基准站故障检测[J]. 信号处理, 2020, 36(7): 1075-1084.
|
|
NI Y D, CHEN C J. The fault detection of CAT Ⅱ/Ⅲ GBAS reference stations using Hilbert-Huang transform[J]. Journal of Signal Processing, 2020, 36(7): 1075-1084 (in Chinese).
|
6 |
熊波, 李肖霖, 王宇晴, 等. 基于长短时记忆神经网络的中国地区电离层TEC预测[J]. 地球物理学报, 2022, 65(7): 2365-2377.
|
|
XIONG B, LI X L, WANG Y Q, et al. Prediction of ionospheric TEC over China based on long and short-term memory neural network[J]. Chinese Journal of Geophysics, 2022, 65(7): 2365-2377 (in Chinese).
|
7 |
陈秀德, 贾小林, 朱永兴, 等. 不同电离层格网产品的精度分析[J]. 大地测量与地球动力学, 2017, 37(8): 849-855.
|
|
CHEN X D, JIA X L, ZHU Y X, et al. Analysis the accuracy of different ionospheric grid products[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 849-855 (in Chinese).
|
8 |
李涌涛, 赵昂, 李建文, 等. 单站区域电离层TEC建模及精度分析[J]. 武汉大学学报(信息科学版), 2022, 47(1): 69-78.
|
|
LI Y T, ZHAO A, LI J W, et al. Regional ionospheric TEC modeling and accuracy analysis based on observations from a station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78 (in Chinese).
|
9 |
蒋磊, 孙蕊, 刘正午, 等. 基于GA-BP的中欧GNSS电离层误差建模与精度分析[J]. 北京航空航天大学学报, 2023, 49(6): 1533-1542.
|
|
JIANG L, SUN R, LIU Z W, et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1533-1542 (in Chinese).
|
10 |
陈鹏, 姚宜斌, 吴寒. 利用时间序列分析预报电离层TEC[J]. 武汉大学学报(信息科学版), 2011, 36(3): 267-270.
|
|
CHEN P, YAO Y B, WU H. TEC prediction of ionosphere based on time series analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270 (in Chinese).
|
11 |
高清文, 赵国忱. CEEMD与GRNN神经网络电离层TEC预报模型[J]. 全球定位系统, 2021, 46(4): 76-84.
|
|
GAO Q W, ZHAO G C. Ionospheric TEC forecast model of based on CEEMD and GRNN[J]. GNSS World of China, 2021, 46(4): 76-84 (in Chinese).
|
12 |
袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57.
|
|
YUAN T J, CHEN Y H, LIU S Q, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 (in Chinese).
|
13 |
TEBABAL A, RADICELLA S M, NIGUSSIE M, et al. Local TEC modelling and forecasting using neural networks[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 172: 143-151.
|
14 |
TANG R X, ZENG F T, CHEN Z, et al. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq[J]. Atmosphere, 2020, 11(4): 316.
|
15 |
汤俊, 钟正宇, 李垠健, 等. 基于SSA-Elman神经网络的电离层TEC短期预报模型[J]. 大地测量与地球动力学, 2022, 42(4): 378-383.
|
|
TANG J, ZHONG Z Y, LI Y J, et al. Short-term prediction model of ionospheric TEC based on SSA-elman neural network[J]. Journal of Geodesy and Geodynamics, 2022, 42(4): 378-383 (in Chinese).
|
16 |
XIONG P, ZHAI D L, LONG C, et al. Long short-term memory neural network for ionospheric total electron content forecasting over China[J]. Space Weather, 2021, 19(4): 345-356.
|
17 |
ILUORE K, LU J Y. Long short-term memory and gated recurrent neural networks to predict the ionospheric vertical total electron content[J]. Advances in Space Research, 2022, 70(3): 652-665.
|
18 |
LI Q F, YANG D, FANG H X. Two hours ahead prediction of the TEC over China using a deep learning method[J]. Universe, 2022, 8(8): 405.
|
19 |
LIU G Y, GAO W, ZHANG Z X, et al. Prediction of ionospheric TEC based on the NARX neural network[J]. Mathematical Problems in Engineering, 2021, 2021: 1-10.
|
20 |
GAO X, YAO Y B. A storm-time ionospheric TEC model with multichannel features by the spatiotemporal ConvLSTM network[J]. Journal of Geodesy, 2023, 97(1): 9.
|
21 |
LEE S J, JI E Y, MOON Y J, et al. One-day forecasting of global TEC using a novel deep learning model[J]. Space Weather, 2021, 19(1): 2020SW002600.
|
22 |
XIA G Z, LIU Y, WEI T F, et al. Ionospheric TEC forecast model based on support vector machine with GPU acceleration in the China region[J]. Advances in Space Research, 2021, 68(3): 1377-1389.
|
23 |
LEI D X, LIU H J, LE H J, et al. Ionospheric TEC prediction base on attentional BiGRU[J]. Atmosphere, 2022, 13(7): 1039.
|
24 |
YANG D, LI Q F, FANG H X, et al. One day ahead prediction of global TEC using Pix2pixhd[J]. Advances in Space Research, 2022, 70(2): 402-410.
|
25 |
XU Z Z, WANG W M, WANG B. Ionosphere TEC prediction based on Chaos[C]∥ISAPE. Piscataway: IEEE Press, 2013: 458-460.
|
26 |
陆建华, 王斌, 胡伍生. 利用BP神经网络改进电离层短期预报模型[J]. 测绘科学技术学报, 2017, 34(1): 1-4.
|
|
LU J H, WANG B, HU W S. Improved prediction model of ionospheric TEC by BP neural network[J]. Journal of Geomatics Science and Technology, 2017, 34(1): 1-4 (in Chinese).
|
27 |
黄文喜, 祝芙英, 翟笃林, 等. BP神经网络和ARMA模型在中纬度TEC短期预测中的对比分析[J]. 大地测量与地球动力学, 2021, 41(3): 262-267.
|
|
HUANG W X, ZHU F Y, ZHAI D L, et al. Comparative analysis of BP neural network and ARMA model in short-term prediction of mid-latitude TEC[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 262-267 (in Chinese).
|
28 |
SONG R, ZHANG X M, ZHOU C, et al. Predicting TEC in China based on the neural networks optimized by genetic algorithm[J]. Advances in Space Research, 2018, 62(4): 745-759.
|
29 |
DABBAKUTI J R K K, BHAVYA LAHARI G. Application of singular spectrum analysis using artificial neural networks in TEC predictions for ionospheric space weather[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5101-5107.
|
30 |
PERAZA-VÁZQUEZ H, PEÑA-DELGADO A F, ECHAVARRÍA-CASTILLO G, et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies[J]. Mathematical Problems in Engineering, 2021, 2021: 1-19.
|
31 |
ALMAZÁN-COVARRUBIAS J H, PERAZA-VÁZQUEZ H, PEÑA-DELGADO A F, et al. An improved dingo optimization algorithm applied to SHE-PWM modulation strategy[J]. Applied Sciences, 2022, 12(3): 992.
|
32 |
BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions andDst [J]. Journal of Geophysical Research, 1975, 80(31): 4204-4214.
|
33 |
张强, 赵齐乐. 武汉大学IGS电离层分析中心全球电离层产品精度评估与分析[J]. 地球物理学报, 2019, 62(12): 4493-4505.
|
|
ZHANG Q, ZHAO Q L. Evaluation and analysis of the global ionosphere maps from Wuhan University IGS Ionosphere Associate Analysis Center[J]. Chinese Journal of Geophysics, 2019, 62(12): 4493-4505 (in Chinese).
|
34 |
LIU L B, WAN W X, NING B Q, et al. Climatology of the mean total electron content derived from GPS global ionospheric maps[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A6): 2009JA014244.
|
35 |
LI Z S, YUAN Y B, WANG N B, et al. SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions[J]. Journal of Geodesy, 2015, 89(4): 331-345.
|