航空学报 > 2024, Vol. 45 Issue (15): 630160-630160   doi: 10.7527/S1000-6893.2024.30160

航天电静液伺服系统复合自适应跟踪控制

窦振华1, 国凯1(), 黄晓明2, 孙杰1, 左哲清3, 赵守军3   

  1. 1.山东大学 机械工程学院,济南 250061
    2.山东航空学院 机电工程学院,滨州 256600
    3.北京精密机电控制设备研究所,北京 100076
  • 收稿日期:2024-01-15 修回日期:2024-03-06 接受日期:2024-04-10 出版日期:2024-05-11 发布日期:2024-04-25
  • 通讯作者: 国凯 E-mail:kaiguo@sdu.edu.cn
  • 基金资助:
    航天伺服驱动与传动技术实验室开放基金(LASAT-2022-A01-03);国家自然科学基金(52375452);航空科学基金(2023M0440Q3001)

Composite adaptive tracking control of aerospace electro⁃hydrostatic actuator servo system

Zhenhua DOU1, Kai GUO1(), Xiaoming HUANG2, Jie SUN1, Zheqing ZUO3, Shoujun ZHAO3   

  1. 1.School of Mechanical Engineering,Shandong University,Jinan 250061,China
    2.College of Mechanical and Electrical Engineering,Shandong University of Aeronautics,Binzhou 256600,China
    3.Beijing Institute of Precision Mechatronics and Controls,Beijing 100076,China
  • Received:2024-01-15 Revised:2024-03-06 Accepted:2024-04-10 Online:2024-05-11 Published:2024-04-25
  • Contact: Kai GUO E-mail:kaiguo@sdu.edu.cn
  • Supported by:
    Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(LASAT-2022-A01-03);National Natural Science Foundation of China(52375452);Aeronautical Science Foundation of China(2023M0440Q3001)

摘要:

针对电静液伺服系统自适应控制过程中存在参数收敛速度慢、跟踪性能差、参数辨识过程中持续激励条件苛刻的问题,进行了复合学习自适应位置跟踪控制算法研究。依据电静液伺服系统的动力学模型,采用反步控制和复合学习的方式设计自适应跟踪控制器,由跟踪误差和预测误差同时驱动参数估计,从而在间歇激励的条件下保证跟踪误差和参数估计误差的收敛性,通过李雅普诺夫理论证明了控制器的一致稳定性。仿真及实验结果表明,相比于传统自适应控制,该方法不需要油缸加速度信号,且表现出更好的轨迹跟踪效果,经过复合学习,系统跟踪误差下降了50%,并且表现出更高的鲁棒性。

关键词: 自适应控制, 电静液伺服系统, 复合学习, 轨迹跟踪, 参数收敛

Abstract:

In addressing challenges such as slow parameter convergence, suboptimal tracking performance, and rigorous persistent-excitation conditions encountered in the adaptive control methods within electro-hydrostatic actuator servo system, this study explores the development of a composite learning adaptive position tracking control algorithm. Leveraging the dynamics model of the electro-hydrostatic actuator servo system, the adaptive tracking controller is formulated through a combination of backstepping control and composite learning. Notably, parameter estimation is simultaneously guided by both tracking error and prediction error, ensuring convergence of both the tracking error and parameter estimation error under interval-excitation conditions, and the consistent stability of the controller is proved by the Lyapunov theory. The simulation and experimental findings indicate that, in contrast to traditional adaptive control, the proposed method eliminates the need for a cylinder acceleration signal and demonstrating superior trajectory tracking. Following the implementation of composite learning, the system's tracking error registers a significant 50% reduction and demonstrating heightened resilience.

Key words: adaptive control, electro-hydrostatic actuator servo system, composite learning, trajectory tracking, parameter convergence

中图分类号: