1 |
谭金花, 孙荣禄, 牛伟, 等. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
|
|
TAN J H, SUN R L, NIU W, et al. Research status of TC4 alloy laser cladding materials[J]. Materials Reports, 2020, 34(15): 15132-15137 (in Chinese).
|
2 |
丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6): 022763.
|
|
DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 022763 (in Chinese).
|
3 |
REVANKAR G D, SHETTY R, RAO S S, et al. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process[J]. Journal of Materials Research and Technology, 2017, 6(1): 13-32.
|
4 |
POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials, 2016, 15(8): 809-815.
|
5 |
刘家奇, 宋明磊, 陈传忠, 等. 钛合金表面激光熔覆技术的研究进展[J]. 金属热处理, 2019, 44(5): 87-96.
|
|
LIU J Q, SONG M L, CHEN C Z, et al. Research progress of laser cladding technology on surface of titanium alloy[J]. Heat Treatment of Metals, 2019, 44(5): 87-96 (in Chinese).
|
6 |
DE OLIVEIRA U, OCELÍK V, DE HOSSON J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface and Coatings Technology, 2005, 197(2-3): 127-136.
|
7 |
曲翠翠. 预置涂层厚度对激光熔覆涂层组织和性能的影响研究[D]. 上海: 上海工程技术大学, 2016.
|
|
QU C C. Research on the effect of the pre-placed layer thickness on microstructure and properties of laser-clad coating[D]. Shanghai: Shanghai University of Engineering Science, 2016 (in Chinese).
|
8 |
张蕾涛, 刘德鑫, 张伟樯, 等. 钛合金表面激光熔覆涂层的研究进展[J]. 表面技术, 2020, 49(8): 97-104.
|
|
ZHANG L T, LIU D X, ZHANG W Q, et al. Research progress of laser cladding coating on titanium alloy surface[J]. Surface Technology, 2020, 49(8): 97-104 (in Chinese).
|
9 |
张志强, 杨凡, 张宏伟, 等. 含稀土TiC x 增强钛基激光熔覆层组织与耐磨性[J]. 航空学报, 2021, 42(7): 624115.
|
|
ZHANG Z Q, YANG F, ZHANG H W, et al. Microstructure and wear resistance of TiC x reinforced Ti-based laser cladding coating with rare earth[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 624115 (in Chinese).
|
10 |
张志强, 杨凡, 张天刚, 等. 激光熔覆碳化钛增强钛基复合涂层研究进展[J]. 表面技术, 2020, 49(10): 138-151, 168.
|
|
ZHANG Z Q, YANG F, ZHANG T G, et al. Research progress of laser cladding titanium carbide reinforced titanium-based composite coating[J]. Surface Technology, 2020, 49(10): 138-151, 168 (in Chinese).
|
11 |
ZHANG Z Q, YANG F, ZHANG H W, et al. Influence of CeO2 addition on forming quality and microstructure of TiC x -reinforced CrTi4-based laser cladding composite coating[J]. Materials Characterization, 2021, 171: 110732.
|
12 |
DONG B X, YANG H Y, QIU F, et al. Design of TiC x nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation[J]. Materials & Design, 2019, 181: 107951.
|
13 |
JIN S B, SHEN P, LIN Q L, et al. Growth mechanism of TiC x during self-propagating high-temperature synthesis in an Al-Ti-C system[J]. Crystal Growth & Design, 2010, 10(4): 1590-1597.
|
14 |
NIE J F, LIU X F, MA X G. Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2010, 491(1-2): 113-117.
|
15 |
SONG M S, HUANG B, ZHANG M X, et al. Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al-Ti-C elemental powders[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(3): 584-589.
|
16 |
贺战文, 康少波. 基于CASTEP软件的TiC x 结构构建及性能研究[J]. 武汉轻工大学学报, 2016, 35(4): 43-46.
|
|
HE Z W, KANG S B. Study of structure & properties of the nonstoichiometric of TiC x based on CASTEP software[J]. Journal of Wuhan Polytechnic University, 2016, 35(4): 43-46 (in Chinese).
|
17 |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
18 |
HEIDARPOUR A, AGHAMOHAMMADI H, JAMSHIDI R, et al. The shape evolution of TiC x prepared by mechanical alloying of Ti-Al-C system after HF treatment[J]. Ceramics International, 2019, 45(4): 4653-4660.
|
19 |
ZHAO J J, WINEY J M, GUPTA Y M. First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry[J]. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(9): 094105.
|
20 |
孙金峰. MA制备非化学计量比TiC x 和TiN x 及其烧结特性的研究[D]. 秦皇岛: 燕山大学, 2010.
|
|
SUN J F. Synthesized nonstoichiometric TiC x and TiN x powders by MA and study of the powders sintering property[D]. Qinhuangdao: Yanshan University, 2010 (in Chinese).
|
21 |
BOUHEMADOU A, GHEBOULI M A, GHEBOULI B, et al. Structural, elastic, electronic and lattice dynamical properties of III-P quaternary alloys matched to AlP[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 718-726.
|
22 |
王根, 李新梅. 第一性原理计算Cu、Co含量对 CoCuFeNi系高熵合金的影响[J]. 功能材料, 2020, 51(3): 3189-3195.
|
|
WANG G, LI X M. Effects of Cu, Co contents on CoCuFeNi system high-entropy alloys by the first principle calculation[J]. Journal of Functional Materials, 2020, 51(3): 3189-3195 (in Chinese).
|
23 |
李继弘, 孙乾, 郑兴荣, 等. YbB6晶体结构、状态方程、弹性和热学性质的第一性原理计算[J]. 四川大学学报(自然科学版), 2020, 57(2): 352-359.
|
|
LI J H, SUN Q, ZHENG X R, et al. Structure, equation of states, elastic and thermal properties of YbB6 crystal: first-principles calculations[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57(2): 352-359 (in Chinese).
|
24 |
高岩, 毛萍莉, 刘正, 等. 金属间化合物MgZn2、Mg2Y和Mg3Zn3Y2弹性性质的第一性原理计算[J]. 沈阳师范大学学报(自然科学版), 2019, 37(3): 228-231.
|
|
GAO Y, MAO P L, LIU Z, et al. Elasticproperty of MgZn2, Mg2Y and Mg3Zn3Y2 intermetallic compounds: First-principles calculation[J]. Journal of Shenyang Normal University (Natural Science Edition), 2019, 37(3): 228-231 (in Chinese).
|
25 |
邓世杰, 赵宇宏, 侯华, 等. 高压下Ti2AlX(X=C, N)的结构、力学性能及热力学性质[J]. 物理学报, 2017, 66(14): 407-412.
|
|
DENG S J, ZHAO Y H, HOU H, et al. Structural, mechanical, and thermodynamic properties of Ti2AlX(X = C, N) at high pressure[J]. Acta Physica Sinica, 2017, 66(14): 407-412 (in Chinese).
|
26 |
BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices[J]. American Journal of Physics, 1955, 23(7): 474.
|
27 |
VASANTHAKUMAR K, KARTHISELVA N S, CHAWAKE N M, et al. Formation of TiC x during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures[J]. Journal of Alloys and Compounds, 2017, 709: 829-841.
|
28 |
GUEMMAZ M, MOSSER A, BOUDOUKHA L, et al. Ion beam synthesis of non-stoichiometric titanium carbide: Composition structure and nanoindentation studies[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 111(3): 263-270
|
29 |
易怀星, 王臣菊, 孙斌, 等. 高温高压下碳化钨晶体的结构、力学、电子、光学以及热力学性能的第一性原理计算[J]. 原子与分子物理学报, 2020, 37(2): 239-249.
|
|
YI H X, WANG C J, SUN B, et al. First-principles calculation of the structure, mechanical, electronic, optical and thermodynamic properties of tungsten carbide crystals at high temperature and high pressure[J]. Journal of Atomic and Molecular Physics, 2020, 37(2): 239-249 (in Chinese).
|
30 |
YIN W J, WEI S H, AL-JASSIM M M, et al. Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory[J]. Physical Review B, 2011, 83(15): 155102.
|
31 |
肖江波, 尧军平, 孙众, 等. TiC/Mg复合材料界面稳定性的第一性原理计算[J]. 材料热处理学报, 2020, 41(5): 28-33.
|
|
XIAO J B, YAO J P, SUN Z, et al. First principle calculation of interfacial stability of TiC/Mg composites[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 28-33 (in Chinese).
|