1 |
钟平, 张业勤, 钟锦岩, 等. 一种新型结构材料S280[J]. 科技导报, 2015, 33(11): 59-62.
|
|
ZHONG P, ZHANG Y Q, ZHONG J Y, et al. A new type of structural material S280[J]. Science and Technology Review, 2015, 33(11): 59-62 (in Chinese).
|
2 |
刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
|
|
LIU Z B, LIANG J X, SU J, et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 549-557 (in Chinese).
|
3 |
张睦林, 朱立群, 刘慧丛, 等. 300M超高强度钢在模拟积水环境中的腐蚀行为[J]. 航空学报, 2013, 34(4): 954-962.
|
|
ZHANG M L, ZHU L Q, LIU H C, et al. Corrosion behavior of 300M ultra-high strength steel in simulated gap water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 954-962 (in Chinese).
|
4 |
钟锦岩, 张业勤, 韩雅芳. S280新型超高强不锈钢中一种新析出相研究[J]. 稀有金属材料与工程, 2019, 48(1): 116-122.
|
|
ZHONG J Y, ZHANG Y Q, HAN Y F. New phase precipitated from the new type of ultrahigh strength stainless steel S280[J]. Rare Metal Materials and Engineering, 2019, 48(1): 116-122 (in Chinese).
|
5 |
ZHONG J Y, CHEN Z, YANG S L, et al. Effect of solution and aging temperatures on microstructure and mechanical properties of 10Cr13Co13Mo5Ni3W1VE (S280) steel[J]. Micromachines, 2021, 12(5): 566-579.
|
6 |
詹中伟, 孙志华, 汤智慧. 化学钝化对S280超高强度不锈钢综合性能的影响[J]. 腐蚀与防护, 2015, 36(8): 742-747, 758.
|
|
ZHAN Z W, SUN Z H, TANG Z H. Effect of chemical passivation on properities of S280 ultra high-strength stainless steel[J]. Corrosion & Protection, 2015, 36(8): 742-747, 758 (in Chinese).
|
7 |
田帅, 刘培根. 喷丸强化对S280新型超高强度不锈钢疲劳性能的影响[J]. 材料保护, 2013, 46(7): 16-18, 6.
|
|
TIAN S, LIU P G. Influence of shot peening on fatigue behavior of S280 ultrahigh strength stainless steel[J]. Materials Protection, 2013, 46(7): 16-18, 6 (in Chinese).
|
8 |
吴道祥, 周杰, 马鹏程, 等. 基于响应面法的7050铝合金筋板类锻件热模锻成形工艺优化[J]. 中南大学学报(自然科学版), 2017, 48(3): 601-607.
|
|
WU D X, ZHOU J, MA P C, et al. Optimization of hot die forging process parameters of 7050 aluminum alloy rib-web type components based on response surface method[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 601-607 (in Chinese).
|
9 |
李萍, 丁永根, 姚彭彭, 等. 基于响应面法的TA15钛合金显微组织预报和优化[J]. 中国有色金属学报, 2016, 26(5): 1019-1026.
|
|
LI P, DING Y G, YAO P P, et al. Prediction and optimization of TA15 titanium alloy microstructure based on response surface methodology[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1019-1026 (in Chinese).
|
10 |
SHEN Z N, WU R D, YUAN C L, et al. Comparative study of metamodeling methods for modeling the constitutive relationships of the TC6 titanium alloy[J]. Journal of Materials Research and Technology, 2021, 10: 188-204.
|
11 |
徐勇, 尹阔, 夏亮亮, 等. 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化[J]. 航空学报, 2021, 42(10): 524831.
|
|
XU Y, YIN K, XIA L L, et al. Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524831 (in Chinese).
|
12 |
LONG J C, XIA Q X, XIAO G F, et al. Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps[J]. International Journal of Mechanical Sciences, 2021, 191: 106069.
|
13 |
BABU K A, PRITHIV T S, GUPTA A, et al. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method[J]. Computational Materials Science, 2021, 195: 110482.
|
14 |
JIANG Y Q, LIN Y C, WANG G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region[J]. Journal of Alloys and Compounds, 2021, 870: 159534.
|
15 |
XIAO Y W, LIN Y C, JIANG Y Q, et al. A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+β region[J]. Materials Science and Engineering: A, 2020, 790: 139692.
|
16 |
LU C Y, WANG J, ZHANG P Z. Flow behavior analysis and flow stress modeling of Ti17 alloy in β forging process[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7668-7681.
|
17 |
尚丽梅, 王春旭, 韩顺, 等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理, 2021, 46(5): 111-117.
|
|
SHANG L M, WANG C X, HAN S, et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction[J]. Heat Treatment of Metals, 2021, 46(5): 111-117 (in Chinese).
|
18 |
LI L X, WANG G, LIU J, et al. Flow softening behavior and microstructure evolution of Al-5Zn-2Mg aluminum alloy during dynamic recovery[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 42-48.
|
19 |
MOON J, JO H H, HA H Y, et al. Microstructure evolution and hot deformation behavior of 25Cr-6Mn-3Ni-1Mo-3W-0.1C-0.34N lean duplex stainless steel[J]. Journal of Materials Research and Technology, 2021, 14: 186-194.
|
20 |
牛长胜, 王艳丽, 林均品, 等. Fe3Si基合金的动态再结晶机制[J]. 金属热处理学报, 2003, 24(1): 28-32, 92.
|
|
NIU C S, WANG Y L, LIN J P, et al. Dynamic recrystallization mechanism of the Fe3Si based alloy[J]. Transactions of Metal Heat Treatment, 2003, 24(1): 28-32, 92 (in Chinese).
|
21 |
YU S, WAN Z P, HU L X, et al. Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map[J]. Materials & Design, 2015, 86: 922-932.
|
22 |
亓耀国, 郭子鹏, 王兆天, 等. Ti-Al-Nb合金的热变形与动态再结晶行为研究[J]. 精密成形工程, 2020, 12(6): 69-76.
|
|
QI Y G, GUO Z P, WANG Z T, et al. Thermal deformation and dynamic recrystallization of Ti-Al-Nb alloys[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 69-76 (in Chinese).
|
23 |
QIU Q, WANG K L, LI X, et al. Hot deformation behavior and processing parameters optimization of SP700 titanium alloy[J]. Journal of Materials Research and Technology, 2021, 15: 3078-3087.
|
24 |
曹富荣, 崔建忠, 丁桦, 等. 不同初始组织材料超塑性m值模型与验证[J]. 哈尔滨工业大学学报, 2015, 47(10): 50-54.
|
|
CAO F R, CUI J Z, DING H, et al. Modeling them value and its experimental verification during superplasticity of materials with different initial microstructures[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 50-54 (in Chinese).
|
25 |
BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1951, 13(1): 1-38.
|
26 |
陈利文, 侯华, 靳玉春, 等. 基于响应面法的铝合金间接挤压铸造工艺研究[J]. 稀有金属材料与工程, 2018, 47(4): 1174-1179.
|
|
CHEN L W, HOU H, JIN Y C, et al. Indirect squeeze casting process of aluminum alloy based on response surface method[J]. Rare Metal Materials and Engineering, 2018, 47(4): 1174-1179 (in Chinese).
|
27 |
豆建新, 熊江涛, 陈丹, 等. 7050铝合金回填式搅拌摩擦点焊组织与性能研究[J]. 精密成形工程, 2019, 11(6): 81-88.
|
|
DOU J X, XIONG J T, CHEN D, et al. Microstructures and mechanical properties of refill friction stir spot welded 7050 aluminium alloy[J]. Journal of Netshape Forming Engineering, 2019, 11(6): 81-88 (in Chinese).
|
28 |
WANG J M, LAN S, LI W K. Numerical simulation and process optimization of an aluminum holding furnace based on response surface methodology and uniform design[J]. Energy, 2014, 72: 521-535.
|
29 |
SHI C, MAO W, CHEN X G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy[J]. Materials Science and Engineering: A, 2013, 571: 83-91.
|
30 |
XIAO Z B, WANG Q, HUANG Y C, et al. Hot deformation characteristics and processing parameter optimization of Al-6.32Zn-2.10Mg alloy using constitutive equation and processing map[J]. Metals, 2021, 11(2): 360.
|
31 |
王兴茂, 丁雨田, 高钰璧, 等. 一种新型Ni-Cr-Co基合金的热变形行为及其组织演变[J]. 稀有金属材料与工程, 2022, 51(1): 249-259.
|
|
WANG X M, DING Y T, GAO Y B, et al. Hot deformation behavior and microstructure evolution of new-type Ni-Cr-Co based alloy[J]. Rare Metal Materials and Engineering, 2022, 51(1): 249-259 (in Chinese).
|