航空学报 > 2023, Vol. 44 Issue (8): 427293-427293   doi: 10.7527/S1000-6893.2022.27293

基于响应面法的S280超高强度不锈钢的热变形行为

张开铭1, 王克鲁1(), 鲁世强1, 柳木桐2, 钟平2, 田野2   

  1. 1.南昌航空大学 航空制造工程学院,南昌 330063
    2.中国航发北京航空材料研究院 钢与稀贵金属研究所,北京 100095
  • 收稿日期:2022-04-19 修回日期:2022-05-12 接受日期:2022-06-14 出版日期:2023-04-25 发布日期:2022-06-17
  • 通讯作者: 王克鲁 E-mail:wangkelu@126.com

Thermal deformation behavior of S280 ultra-high strength stainless steel based on response surface methodology

Kaiming ZHANG1, Kelu WANG1(), Shiqiang LU1, Mutong LIU2, Ping ZHONG2, Ye TIAN2   

  1. 1.School of Aerospace Manufacturing Engineering,Nanchang Hangkong University,Nanchang 330063,China
    2.Institute of Steel and Rare Precious Metals,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China
  • Received:2022-04-19 Revised:2022-05-12 Accepted:2022-06-14 Online:2023-04-25 Published:2022-06-17
  • Contact: Kelu WANG E-mail:wangkelu@126.com

摘要:

采用Thermecmaster-Z型热模拟试验机进行等温恒应变速率压缩实验,研究了S280超高强度不锈钢在变形温度为850~1 150 ℃、应变速率为0.001~1 s-1时的热变形行为。分析了S280超高强度不锈钢的流变行为特征,计算了热变形激活能参数、应变速率敏感指数;建立了以变形温度、应变速率、应变为输入变量,热变形激活能参数、应变速率敏感指数为响应目标的响应面模型,并通过多目标可视化优化了S280超高强度不锈钢的热加工工艺参数。结果表明S280超高强度不锈钢为正应变速率和负温度敏感型材料,其流变应力随应变速率的降低和变形温度的升高而减小;建立的响应面模型具有较高精度,能直观反映材料参数与热变形条件之间的关系,可用于材料相关参数的预测;通过多目标可视化优化并结合组织验证获得了S280超高强度不锈钢最佳的热加工工艺参数范围为变形温度1 085~1 150 ℃、应变速率0.001~0.003 s-1

关键词: S280超高强度不锈钢, 响应面法, 热变形行为, 工艺参数优化, 热变形激活能, 应变速率敏感指数

Abstract:

The thermal deformation behavior of S280 ultra-high strength stainless steel was studied at deformation temperatures of 850–1 150 ℃ and strain rates of 0.001–1 s-1. The isothermal constant strain rate compression experiments were carried out using the Thermecmaster-Z thermal simulation tester. The flow behavior characteristics of the stainless steel was analyzed. The thermal deformation activation energy parameter and the strain rate sensitivity exponent were calculated. A response surface model was established with deformation temperature, strain rate, and strain as the input variables and thermal deformation activation energy parameter and strain rate sensitivity exponent as the response targets. The thermal processing process parameters were optimized by multi-objective visualization. The results show that the S280 ultra-high strength stainless steel is a positive strain rate and negative temperature sensitive material, and its flow stress decreases with decreasing strain rate and increasing deformation temperature. The established response surface model has high accuracy and can intuitively reflect the relationship between material parameters and thermal deformation conditions, and can be used for prediction of material-related parameters. Through multi-objective visual optimization and microstructure verification, the optimal thermal processing process parameters for S280 ultra-high strength stainless steel were obtained to be in the range of deformation temperature of 1 085–1 150 ℃ and strain rate of 0.001–0.003 s-1.

Key words: S280 ultra-high strength stainless steel, response surface method, thermal deformation behavior, process parameter optimization, thermal deformation activation energy, strain rate sensitivity exponent

中图分类号: