航空学报 > 2023, Vol. 44 Issue (7): 327073-327073   doi: 10.7527/S1000-6893.2022.27073

弹道可调的落角约束分数阶滑模制导律设计

盛永智(), 甘佳豪, 张成新   

  1. 北京理工大学 自动化学院,北京  100081
  • 收稿日期:2022-02-24 修回日期:2022-03-22 接受日期:2022-06-05 出版日期:2023-04-15 发布日期:2022-06-17
  • 通讯作者: 盛永智 E-mail:shengyongzhi@bit.edu.cn

Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint

Yongzhi SHENG(), Jiahao GAN, Chengxin ZHANG   

  1. School of Automation,Beijing Institute of Technology,Beijing  100081,China
  • Received:2022-02-24 Revised:2022-03-22 Accepted:2022-06-05 Online:2023-04-15 Published:2022-06-17
  • Contact: Yongzhi SHENG E-mail:shengyongzhi@bit.edu.cn

摘要:

针对制导弹道带落角约束的末制导问题,提出了一种基于分数阶微积分理论的时变滑模制导律。可通过提前设置参数调整制导弹道,分数阶的引入增加了制导弹道的可变性和多样性。利用李雅普诺夫稳定性理论证明了制导律的稳定性。采用分数阶积分中值定理,将分数阶微分方程转化为一阶线性微分方程,并求解出状态误差的解析式,最后利用夹逼定理证明了制导律的收敛性。数值仿真结果表明,该制导律在保证高制导精度的同时,可大范围改变弹道形式,使制导弹道复杂多变难以预测。

关键词: 制导律, 滑模控制, 分数阶微积分, 落角约束, 弹道规划

Abstract:

A time-varying sliding mode guidance law based on fractional calculus is presented for the terminal guidance problem with corner constraint. The guidance trajectory can be adjusted in advance by setting parameters,and the introduction of fractional order increases the variability and diversity of the guidance trajectory. The stability of the guidance law is proved by using the Lyapunov stability theory. Through the fractional order integral mean value theorem,the fractional order differential equation is transformed into a first-order linear differential equation,which is used to solve the analytical formula of state error. Finally,the convergence of the guidance law is proved by using the Squeeze Theorem. The simulation results show that the guidance law can change the trajectory form in a large range while ensuring high guidance accuracy,which makes the guidance trajectory complex and difficult to predict.

Key words: guidance law, sliding mode control, fractional calculus, falling angle constraint, trajectory planning

中图分类号: