1 |
李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 024691.
|
|
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024691 (in Chinese).
|
2 |
WANG N, LI B, WEI X X, et al. Ship detection in spaceborne infrared image based on lightweight CNN and multisource feature cascade decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4324-4339.
|
3 |
YOU Y N, RAN B H, MENG G, et al. OPD-net: Prow detection based on feature enhancement and improved regression model in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 6121-6137.
|
4 |
LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]∥ Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2017: 324–331.
|
5 |
XIONG W, XIONG Z Y, CUI Y Q. An explainable attention network for fine-grained ship classification using remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
|
6 |
LI Y S, ZHANG Y J, HUANG X, et al. Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6521-6536.
|
7 |
XIONG W, XIONG Z Y, CUI Y Q, et al. A discriminative distillation network for cross-source remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1234-1247.
|
8 |
XIONG W, LV Y F, ZHANG X H, et al. Learning to translate for cross-source remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4860-4874.
|
9 |
杨曦, 张鑫, 郭浩远, 等. 基于不变特征的多源遥感图像舰船目标检测算法[J]. 电子学报, 2022, 50(4): 887-899.
|
|
YANG X, ZHANG X, GUO H Y, et al. Invariant features based ship detection model for multi-source remote sensing images[J]. Acta Electronica Sinica, 2022, 50(4): 887-899 (in Chinese).
|
10 |
YANG X, ZHANG X, WANG N N, et al. A robust one-stage detector for multiscale ship detection with complex background in massive SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
|
11 |
YANG X, WANG Z H, ZHAO J Y, et al. FG-GAN: A fine-grained generative adversarial network for unsupervised SAR-to-optical image translation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
|
12 |
谭大宁, 刘瑜, 姚力波, 等. 基于视觉注意力机制的多源遥感图像语义分割[J]. 信号处理, 2022, 38(6): 1180-1191.
|
|
TAN D N, LIU Y, YAO L B, et al. Semantic segmentation of multi-source remote sensing images based on visual attention mechanism[J]. Journal of Signal Processing, 2022, 38(6): 1180-1191 (in Chinese).
|
13 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 618-626.
|
14 |
CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.
|
15 |
ZHOU W X, NEWSAM S, LI C M, et al. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 197-209.
|
16 |
SHAO Z F, YANG K, ZHOU W X. Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset[J]. Remote Sensing, 2018, 10(6): 964.
|
17 |
LU X Q, WANG B Q, ZHENG X T, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2183-2195.
|
18 |
GUO M, YUAN Y, LU X Q. Deep cross-modal retrieval for remote sensing image and audio[C]∥ 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). Piscataway: IEEE Press, 2018: 1-7.
|
19 |
XIONG W, XIONG Z Y, ZHANG Y, et al. A deep cross-modality hashing network for SAR and optical remote sensing images retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5284-5296.
|
20 |
ZHANG X H, LV Y F, YAO L B, et al. A new benchmark and an attribute-guided multilevel feature representation network for fine-grained ship classification in optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1271-1285.
|
21 |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]∥ 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009: 248-255.
|
22 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
23 |
MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008; 9(8): 2579–2605.
|
24 |
ZHANG D Q, LI W J. Large-scale supervised multimodal hashing with semantic correlation maximization[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 2014.
|
25 |
XU X, SHEN F M, YANG Y, et al. Learning discriminative binary codes for large-scale cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2494-2507.
|
26 |
JIANG Q Y, LI W J. Deep cross-modal hashing[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 3270-3278.
|
27 |
CAO Y, LONG M S, WANG J M, et al. Deep visual-semantic hashing for cross-modal retrieval[C]∥ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1445-1454.
|