李益文1,3, 邓朝晖2,3(), 刘涛1,3, 卓荣锦1,3, 李重阳1,3, 吕黎曙1,3
收稿日期:
2022-05-31
修回日期:
2022-06-12
接受日期:
2022-07-13
出版日期:
2023-06-15
发布日期:
2022-08-08
通讯作者:
邓朝晖
E-mail:edeng0080@vip.sina.com
基金资助:
Yiwen LI1,3, Zhaohui DEND2,3(), Tao LIU1,3, Rongjin ZHUO1,3, Zhongyang LI1,3, Lishu LV1,3
Received:
2022-05-31
Revised:
2022-06-12
Accepted:
2022-07-13
Online:
2023-06-15
Published:
2022-08-08
Contact:
Zhaohui DEND
E-mail:edeng0080@vip.sina.com
Supported by:
摘要:
颤振是航空航天加工制造等领域中广泛存在的问题,深入开展切削加工过程中颤振在线监测研究对于进一步提升颤振抑制效果、保障加工系统稳定运行具有重要意义。根据颤振在线监测所需的实时性和精确性的要求,围绕数据采集、在线特征提取及颤振识别进行综述,首先介绍了3种颤振数据采集方法的特点,然后深入归纳与分析了颤振特征应用情况及影响颤振特征提取的关键因素,接着比较并总结了基于有监督学习和无监督学习的颤振识别技术的特点,最后总结并展望了目前颤振在线监测所存在的问题及发展趋势,可为未来颤振在线监测研究提供参考。
中图分类号:
李益文, 邓朝晖, 刘涛, 卓荣锦, 李重阳, 吕黎曙. 切削加工过程中颤振在线监测研究综述[J]. 航空学报, 2023, 44(11): 27562-027562.
Yiwen LI, Zhaohui DEND, Tao LIU, Rongjin ZHUO, Zhongyang LI, Lishu LV. Review on on⁃line monitoring of chatter in cutting process[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 27562-027562.
表 1
颤振数据采集方法的优缺点及应用总结
采集形式 | 主要内容 | 采集信号 | 优点 | 不足 | 文献 |
---|---|---|---|---|---|
外接传感器数据采集 | 搭建了镗削颤振智能识别系统 | 加速度信号 | 监测精度较高;通用性、灵活性好;成本较低;可采集机床外部信息 | 集成性差;抗干扰能力弱;无信息互动能力 | |
验证了电流信号用于颤振监测的可行性与有效性 | 电流信号 | ||||
通过颤振特征揭示了力信号与铣削状态的隐含关系 | 力信号 | ||||
通过声音信号探究了不同的切削参数下的颤振识别情况 | 声音信号 | ||||
开发了声音与加速度信号融合的传感器系统 | 声音、加速度信号 | ||||
提出了一种结合多传感数据融合和先进智能技术的数据采集和颤振识别方法 | 声音、加速度信号 | ||||
基于可编程逻辑控制器数据采集 | 搭建了具备PLC信号的采集与分析的铣削颤振监测系统 | 加速度信号 | 数据传输迅速;通用性和扩展性良好;经PLC处理过的信号均可采集 | 连接和实现复杂;限于开关信号;受机床开放度的影响 | |
完成了PLC信号的采集和读取,并建立了颤振监测系统 | 加速度信号 | ||||
通过单片机完成PLC数据采集,并实现远程颤振监测 | 电流、电压、功率信号 | ||||
开发了基于PLC的数据实时采集系统 | 力信号 | ||||
利用机床主轴单元中的PLC监测切削过程 | 加速度信号 | ||||
验证了通过PLC采集模拟信号输出力信号方案的正确性 | 声音、加速度信号 | ||||
机床通讯接口数据采集 | 采用RS-232接口实现了颤振数据采集,并搭建了 机床状态在线监测系统 | 声发射信号 | 数据采集手段丰富;具备信息共享能力;实时性良好;实施简单,成本低 | 缺乏采集机床外部信息的能力;缺乏良好的通用性、灵活性和可扩展性 | |
介绍了一种利用DNC接口完成颤振数据采集的方法 | 电流、声音信号 | ||||
通过OPC和MQTT通讯协议完成了切削振动 信息的采集 | 加速度信号 | ||||
通过TCP/IP通讯协议建立了计算效率高、 通讯友好的颤振数据采集和监测平台 | 加速度信号 | ||||
通过开放式数控系统接口采集实现了数据采集与 共享,并提高了加工过程的颤振稳定性 | 电压、电流信号 | ||||
建立了以开放式数控系统接口采集为基础的数据 采集模块和颤振在线监测模块 | 加速度、电流信号 |
表 4
有监督颤振识别法优缺点及应用总结
有监督颤振识别法 | 主要内容 | 精度 | 优点 | 不足 | 文献 |
---|---|---|---|---|---|
神经网络 | 建立了基于DNN的颤振辨识模型 | 96% | 具有良好的学习和泛化能力 | 可解释性较差;小样本数据分类精度差;过拟合问题 | |
提出了基于DCNN的铣削实时颤振监测方案 | 99.6% | ||||
提出了将切削参数与DCNN相结合的颤振监测方法 | 99.8% | ||||
分析了ANN在车削稳定性建模中的应用 | 92.6% | ||||
比较了面响应法和ANN的颤振识别效果 | |||||
结合多种算法提高了DCNN的分类性能及颤振 识别效率 | 98.3% | ||||
支持向量机 | 建立了可在线进化的LS-OC-SVM颤振识别模型 | 99.0% | 分类精度高;可处理高维、非线性特征 | 对参数和核函数的选择敏感;大样本数据分类精度较差 | |
提出了基于SLVM颤振在线监测系统的多通道 融合策略 | 96% | ||||
提出了基于图像信号的MC-SVM颤振在线识别方法 | 96.6% | ||||
采用多特征融和Adaboost-SVM提高了颤振识别的 鲁棒性 | 99% | ||||
将AHLRD与SVM结合建立了颤振在线识别系统 | 99.4% | ||||
提升法 | 提出了基于GTB的颤振智能监测方案 | 100% | 高维数据处理能力强;鲁棒性好 | 计算复杂度高;运行速度慢 | |
建立了在变切削参数下的LGB颤振识别模型 | 96% | ||||
决策树 | 通过决策树建立了颤振识别结果与工件表面质量 的映射关系 | 92.4% | 计算复杂度低;可自动选择特征 | 依赖大量的训练数据;过拟合问题 | |
通过GBDT算法建立了振动能量回归模型 | |||||
K近邻 | 利用增强K近邻实现颤振识别和模型自学习 | 简单易实现;对异常值不敏感;精度较高 | 计算成本较高;参数需选择合理 | ||
提出了将K近邻与时间序列相似度相结合颤振 在线监测方法 | 98% | ||||
隐马尔可夫模型 | 通过隐马尔可夫模型建立颤振辨识模型 | 计算能力强;所需训练样本少 | 算法复杂度较高;适用范围小 | ||
随机森林 | 对比了DNN、回归树和随机森林在铣削颤振识别 中的性能 | 抗噪性能好;学习能力强 | 非线性数据处理能力较差 |
1 | DANG X B, WAN M, YANG Y. Prediction and suppression of chatter in milling of structures with low rigidity: A review[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(3): 2021010. |
2 | 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164. |
YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164 (in Chinese). | |
3 | 隋翯,张德远,陈华伟,等. 超声振动切削对耦合颤振的影响[J]. 航空学报, 2016, 37(5): 1696-1704. |
SUI H, ZHANG D Y, CHEN H W, et al. Influence of ultrasonic vibration cutting on mode-coupling chatter[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1696-1704 (in Chinese). | |
4 | 廖文和, 郑侃, 孙连军, 等. 大型复杂构件机器人加工稳定性研究进展[J].航空学报, 2022, 43(1): 026061. |
LIAO W H, ZHENG K, SUN L J, et al. Review on chatter stability in robotic machining for large complex components[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):026061 (in Chinese). | |
5 | NIU J B, XU J T, REN F, et al. A short review on milling dynamics in low-stiffness cutting conditions: Modeling and analysis[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(1): 2020004. |
6 | YUE C X, GAO H N, LIU X L, et al. A review of chatter vibration research in milling[J]. Chinese Journal of Aeronautics, 2019, 32(2): 215-242. |
7 | 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23. |
WANG Z X, LIU X L, LI M Y, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23 (in Chinese). | |
8 | 王燕山, 胡飞, 张梅菊, 等. 智能制造中的状态在线监测技术[J]. 测控技术, 2018, 37(5): 3-8,19. |
WANG Y S, HU F, ZHANG M J, et al. Status online monitoring technology for intelligent manufacturing[J]. Measurement and Control Technology, 2018, 37(5):3-8,19 (in Chinese). | |
9 | 余俊. 基于MTConnect的数控机床网络监测及能耗建模研究[D]. 武汉: 华中科技大学, 2018. |
YU J. Research on network monitoring and energy consumption modeling of NC machine tool based on MTConnect[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese). | |
10 | YAO Z H, MEI D Q, CHEN Z C. On-line chatter detection and identification based on wavelet and support vector machine[J]. Journal of Materials Processing Technology, 2010, 210(5): 713-719. |
11 | LIU Y, WANG X F, LIN J, et al. Early chatter detection in gear grinding process using servo feed motor current[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12): 1801-1810. |
12 | ABUL H M, ABU-BAKAR M H, RAZUWAN R, et al. Deep neural network tool chatter model for aluminum surface milling using acoustic emmision sensor[J]. MATEC Web of Conferences, 2018, 217: 03003. |
13 | 任静波, 孙根正, 陈冰, 等. 基于多尺度排列熵的铣削颤振在线监测方法[J]. 机械工程学报, 2015, 51(9): 206-212. |
REN J B, SUN G Z, CHEN B, et al. Multi-scale permutation entropy based on-line milling chatter detection method[J]. Journal of Mechanical Engineering, 2015, 51(9): 206-212 (in Chinese). | |
14 | LI K, HE S P, LI B, et al. A novel online chatter detection method in milling process based on multiscale entropy and gradient tree boosting[J]. Mechanical Systems and Signal Processing, 2020, 135(C): 106385. |
15 | SHRIVASTAVA Y, SINGH B, SHARMA A. Analysis of tool chatter in terms of chatter index and severity using a new adaptive signal processing technique[J]. Experimental Techniques, 2018, 42(2): 141-153. |
16 | SRINIVASAN A, DORNFELD D, BHINGE R. Integrated vibration and acoustic data fusion for chatter and tool condition classification in milling[C]∥2016 International Symposium on Flexible Automation (ISFA). 2016. |
17 | TRAN M Q, LIU M K, ELSISI M. Effective multi-sensor data fusion for chatter detection in milling process[J]. ISA Transactions, 2022,125:514-527. |
18 | 吴石, 王洋洋, 刘献礼, 等. 铣削颤振过程非线性振动特性的在线分析[J]. 哈尔滨理工大学学报, 2018, 23(1): 1-6. |
WU S, WANG Y Y, LIU X L, et al. Online analysis of nonlinear vibration characteristics of milling chatter[J]. Journal of Harbin University of Science and Technology,2018,23(1):1-6 (in Chinese). | |
19 | 黄群, 王民, 昝涛, 等. 基于嵌入式系统的切削颤振在线监测技术研究[J]. 电子技术应用, 2010, 36(3): 93-96. |
HUANG Q, WANG M, ZAN T, et al. Research of on-line monitoring of cutting chatter based on embedded system[J]. Application of Electronic Technique, 2010, 36(3): 93-96 (in Chinese). | |
20 | 郑晓虎, 刘强, 孙鹏鹏, 等. 基于MTConnect的机床远程多功能监控系统[J]. 组合机床与自动化加工技术, 2018(10): 80-84. |
ZHENG X H, LIU Q, SUN P P, et al, Machine remote multifunctional monitoring system based on MTConnect[J]. Combined Machine Tool and Automatic Machining Technology, 2018(10): 80-84 (in Chinese). | |
21 | 赵盛烨, 吴文江, 佟敏, 等. 基于改进MFAC的智能数控系统设计与实现[J]. 吉林大学学报(信息科学版), 2020, 38(2): 160-171. |
ZHAO H Y, WU W J, TONG M, et al. Design and implementation of intelligent CNC system based on improved MFAC[J]. Journal of Jilin University (Information Science Edition), 2020, 38(2): 160-171 (in Chinese). | |
22 | ABELE E, SIELAFF T, SCHIFFLER A. Method for chatter detection with standard PLC systems[J]. Production Engineering, 2012, 6(6): 611-619. |
23 | 庞长富, 王志明, 蔡正龙, 等. 基于PLC的六维力传感器的数据采集及应用[J]. 工业控制计算机, 2018, 31(8): 15-16. |
PANG C F, WANG Z M, CAI Z L, et al. Data acquisition and application of six-dimensional force sensor based on PLC[J]. Industrial Control Computer, 2018, 31(8): 15-16 (in Chinese). | |
24 | 李智,汪惠芬,刘婷婷,等. 面向制造过程的车间实时监控系统设计[J]. 机械设计与制造, 2013(3): 256-259. |
LI Z, WANG H F, LIU T T, et al. Design of workshop real-time monitoring system for manufacturing process[J]. Machinery Design & Manufacture, 2013(3): 256-259 (in Chinese). | |
25 | 徐永乐. 基于ARM9的数控机床数据采集系统的研究与开发[D]. 南京: 南京航空航天大学, 2011. |
XU Y L. research on data acquisition system of NC machine tool based on ARM9[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). | |
26 | MARINESCU I, AXINTE D A. An automated monitoring solution for avoiding an increased number of surface anomalies during milling of aerospace alloys[J]. International Journal of Machine Tools and Manufacture, 2011, 51(4): 349-357. |
27 | LIU W, KONG C P, NIU Q, et al. A method of NC machine tools intelligent monitoring system in smart factories[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61(C): 101842-101842. |
28 | MAUTHNER G, EHRENDORFER M, TRAUTNER T, et al. Method for data-driven NC-code optimization based on dexel material removal simulation and tool holder vibration measurements[J]. Procedia CIRP, 2021, 104: 1131-1136. |
29 | WANG S M, HO C D, TSAI P C, et al. Study of an efficient real-time monitoring and control system for BUE and cutter breakage for CNC machine tools[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(6): 1109-1115. |
30 | 苏春燕, 孟祥懿, 崔建辉.基于C#联网数控机床运行监控与信息管理系统[J]. 制造技术与机床, 2021(4): 14-19. |
SU C Y, MENG X Y, CUI J H. Operation monitoring and production information management system of networked CNC machines based on C#[J]. Manufacturing Technology & Machine Tool, 2021(4): 14-19 (in Chinese). | |
31 | 胡磊. 大型薄壁件镜像加工装备软件系统研究与开发[D]. 大连: 大连理工大学, 2018. |
HU L. The research and development of the software system of the mirror milling equipment for large thin-walled parts[D]. Dalian: Dalian University Technology, 2018 (in Chinese). | |
32 | 单蒋楠. 基于开放式数控系统的数据采集及在线颤振监测平台的开发[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
SHAN J N. Research on data acquisition and online chatter monitoring platform based on open numerical control system[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
33 | 刘献礼, 刘强, 岳彩旭, 等. 切削过程中的智能技术[J]. 机械工程学报, 2018, 54(16): 45-61. |
LIU X L, LIU Q, YUE C X, et al. Intelligent machining technology in cutting process[J]. Journal of Mechanical Engineering, 2018, 54(16): 45-61 (in Chinese). | |
34 | 龚帝武. 机床主轴振动状态在线监测方法研究与系统实现[D]. 成都: 电子科技大学, 2020. |
GONG D W. Research and implementation of online monitoring method for vibration state of machine tool spindle[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese). | |
35 | LIU H Q, CHEN Q H, LI B, et al. On-line chatter detection using servo motor current signal in turning[J]. Science China Technological Sciences, 2011, 54(12): 3119-3129. |
36 | LIU C F, GAO X J, CHI D X, et al. On-line chatter detection in milling using fast Kurtogram and frequency band power[J]. European Journal of Mechanics - A/Solids, 2021, 90: 104341. |
37 | WANG L M, PAN J L, SHAO Y M, et al. Two new kurtosis-based similarity evaluation indicators for grinding chatter diagnosis under non-stationary working conditions[J]. Measurement, 2021, 176: 109215. |
38 | 陈青海. 基于驱动电机电流信号的车削颤振在线监测方法研究[D]. 武汉: 华中科技大学, 2012. |
CHEN Q H. On-line chatter detection method based on drive motor current signal in turning[D]. Wuhan: Huazhong University of Science and Technology, 2012 (in Chinese). | |
39 | CHEN Y, LI H Z, HOU L, et al. Feature extraction using dominant frequency bands and time-frequency image analysis for chatter detection in milling[J]. Precision Engineering, 2019, 56: 235-245. |
40 | 沈建洋. 基于BEMD与LSSVM的大型磨床磨削颤振在线检测方法研究[D]. 杭州: 浙江理工大学, 2017. |
SHEN J Y. An online BEMD and LSSVM based grinding chatter detection method for large grinding machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2017 (in Chinese). | |
41 | SCHMITZ T L, MEDICUS K, DUTTERER B. Exploring once-per-revolution audio signal variance as a chatter indicator[J]. Machining Science and Technology, 2002, 6(2): 215-233. |
42 | 谢锋云. 基于经验模态分解与神经网络的在线状态监测(英文)[J]. 机床与液压, 2013, 41(24): 48-51. |
XIE F Y. On-line condition monitoring based on empirical mode decomposition and neural network(English) [J]. Machine Tool and Hydraulics, 2013, 41(24): 48-51 (in Chinese). | |
43 | YE J, FENG P F, XU C, et al. A novel approach for chatter online monitoring using coefficient of variation in machining process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 287-297. |
44 | 王民, 刘国付, 昝涛, 等. 基于控制图的磨削颤振预测方法[J]. 北京工业大学学报, 2015, 41(9): 1296-1301. |
WANG M, LIU G F, ZAN T, et al, Prediction method of grinding chatter based on control chart[J]. Journal of Beijing University of Technology, 2015, 41(9): 1296-1301 (in Chinese). | |
45 | CHEN H G, SHEN J Y, CHEN W H, et al. Grinding chatter detection and identification based on BEMD and LSSVM[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1. |
46 | LAMRAOUI M, BARAKAT M, THOMAS M, et al. Chatter detection in milling machines by neural network classification and feature selection[J]. Journal of Vibration and Control, 2015, 21(7): 1251-1266. |
47 | 张智, 刘成颖, 刘辛军, 等. 采用小波包能量熵的铣削振动状态分析方法研究[J]. 机械工程学报, 2018, 54(21): 57-62. |
ZHANG Z, LIU C Y, LIU X J, et al. Analysis of milling vibration state based on the energy entropy of WPD[J]. Journal of Mechanical Engineering, 2018, 54(21): 57-62 (in Chinese). | |
48 | GARCÍA P E, NÚÑEZ LÓPEZ P J. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations[J]. Mechanical Systems and Signal Processing, 2018, 98: 902-919. |
49 | TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2755-2764. |
50 | MOU W P, ZHU S W, JIANG Z X, et al. Vibration signal-based chatter identification for milling of thin walled structure[J]. Chinese Journal of Aeronautics, 2020, 35(1): 204-214 |
51 | LIU C F, ZHU L D, NI C B. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 169-182. |
52 | ZHANG Z, LI H G, MENG G, et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 106-112. |
53 | JI Y J, WANG X B, LIU Z B, et al. EEMD based online milling chatter detection by fractal dimension and power spectral entropy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7-8): 1-2. |
54 | NAIR U, KRISHNA B M, NAMBOOTHIRI V N N, et al. Permutation entropy based real-time chatter detection using audio signal in turning process[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1-4): 61-68. |
55 | LI K, HE S P, LUO B, et al. Online chatter detection in milling process based on VMD and multiscale entropy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(4): 5009-5022. |
56 | SUN W Y, ZHANG D H, LUO M. Machining process monitoring and application: a review[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(2): 2021001. |
57 | CUKA B, CHO M, KIM D W. Timely and efficient chatter onset detection for end-milling[J]. Procedia Manufacturing, 2018, 17: 142-149. |
58 | 汪晓姗, 彭志科, 陈是扦. 基于瞬时频率估计与Vold-Kalman滤波的铣削颤振识别[J]. 振动与冲击, 2018, 37(16): 70-76. |
WANG X S, PENG Z K, CHEN S Q. Chatter detection in milling process based on instantaneous frequency estimation and the Vold-Kalman filter[J]. Journal of Vibration and Shock, 2018, 37(16): 70-76 (in Chinese). | |
59 | DONG X J, TU G W, WANG X S, et al. Real-time chatter detection via iterative Vold-Kalman filter and energy entropy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(5-6): 2003-2019. |
60 | CHEN D, ZHANG X J, ZHAO H, et al. Development of a novel online chatter monitoring system for flexible milling process[J]. Mechanical Systems and Signal Processing, 2021, 159: 107799. |
61 | LIU C, XU W W, GAO L. Identification of milling chatter based on a novel frequency-domain search algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(9-12): 2393-2407. |
62 | WANG C X, ZHANG X W, CHEN X F, et al. Weak chatter detection in milling based on sparse dictionary[J]. Procedia Manufacturing, 2020, 48: 839-843. |
63 | 窦慧晶, 肖子恒, 杨帆. 基于改进稀疏度自适应匹配追踪算法的压缩感知DOA估计[J]. 北京工业大学学报, 2021,47(11):1239-1246. |
DOU H X, XIAO Z H, YANG F. Compressed sensing DOA estimation based on improved sparsity adaptive matching pursuit algorithm[J]. Journal of Beijing University of Technology, 2021, 47(11):1239-1246 (in Chinese). | |
64 | LIU Y, WANG X F, LIN J, et al. An adaptive grinding chatter detection method considering the chatter frequency shift characteristic[J]. Mechanical Systems and Signal Processing, 2020, 142(C): 106672. |
65 | THOMAZELLA R, LOPES W N, AGUIAR P R, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals[J]. Measurement, 2019, 145: 71-83. |
66 | UEKITA M, TAKAYA Y. Tool condition monitoring technique for deep-hole drilling of large components based on chatter identification in time–frequency domain[J]. Measurement, 2017, 103: 199-207. |
67 | 李舜酩, 郭海东, 李殿荣. 振动信号处理方法综述[J]. 仪器仪表学报, 2013, 34(8): 1907-1915. |
LI S M, GUO H D, LI D R. Review of vibration signal processing methods[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1907-1915 (in Chinese). | |
68 | 亓丽梅, 李晓峰, 张国柱. 小波变换思想及其在信号处理中的应用[J]. 电子科技大学学报, 2008(3): 386-388. |
QI L M, LI X F, ZHANG G Z. Wavelet transform theory and its application in signal processing[J]. Journal of University of Electronic Science and Technology of China, 2008(3): 386-388 (in Chinese). | |
69 | WANG L, LIANG M. Chatter detection based on probability distribution of wavelet modulus maxima[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(6): 989-998. |
70 | YUAN Y J, JING X B, LI H Z, et al. Chatter detection based on wavelet coherence functions in micro-end-milling processes[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(9): 1934-1945. |
71 | YAO Y C, CHEN Y H, LIU C H, et al. Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 297-309. |
72 | 李欣, 梅德庆, 陈子辰. 基于经验模态分解和希尔伯特-黄变换的精密孔镗削颤振特征提取[J]. 光学精密工程, 2011, 19(6): 1291-1297. |
LI X, MEI D Q, CHEN Z C. Feature extraction of chatter for precision hole boring processing based on EMD and HHT[J]. Optics and Precision Engineering, 2011, 19(6): 1291-1297 (in Chinese). | |
73 | 贾广飞, 孙师泽, 武哲. 经验模态分解在切削振动信号分析中的应用[J]. 河北工业科技, 2018, 35(3): 215-219. |
JIA G F, SUN S Z, WU Z. Application of empirical mode decomposition in analyzing cutting vibration signal[J]. Hebei Journal of Industrial Science and Technology, 2018, 35(3): 215-219 (in Chinese). | |
74 | SHRIVASTAVA Y, SINGH B. Tool chatter prediction based on empirical mode decomposition and response surface methodology[J]. Measurement, 2020, 173: 108585. |
75 | LIU C F, ZHU L D, NI C B. The chatter identification in end milling based on combining EMD and WPD[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12): 3339-3348. |
76 | 齐天, 裘焱, 吴亚锋. 利用聚合经验模态分解抑制振动信号中的模态混叠[J]. 噪声与振动控制, 2010, 30(2): 103-106. |
QI T, QIU Y, WU Y F. Application of EEMD to suppression of mode mixing in oscillation signals[J]. Noise and Vibration Control, 2010, 30(2): 103-106 (in Chinese). | |
77 | FU Y, ZHANG Y, ZHOU H, et al. Timely online chatter detection in end milling process[J]. Mechanical Systems and Signal Processing, 2016, 75: 668-688. |
78 | SHRIVASTAVA Y, SINGH B. A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning[J]. European Journal of Mechanics - A/Solids, 2018, 73: 381-393. |
79 | SHRIVASTAVA Y, SINGH B. Online monitoring of tool chatter in turning based on ensemble empirical mode decomposition and Teager Filter[J]. Transactions of the Institute of Measurement and Control, 2020, 42(6): 1166-1179. |
80 | WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. |
81 | SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society interface, 2005, 2(5): 443-454. |
82 | 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107. |
CHEN S Q, PENG Z K, ZHOU P. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107 (in Chinese). | |
83 | 韩晓慧, 杜松怀, 苏娟, 等. 基于局部均值分解的触电故障信号瞬时参数提取[J]. 农业工程学报, 2015, 31(17): 221-227. |
HAN X H, DU S H, SU J, et al. Extraction of biological electric shock signal instantaneous amplitude and frequency based on local mean decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 221-227 (in Chinese). | |
84 | GUPTA P, SINGH B. Analyzing chatter vibration during turning on computer numerical control lathe using ensemble local mean decomposition and probabilistic approach[J]. Noise & Vibration Worldwide, 2021, 52(6): 168-180. |
85 | GUPTA P, SINGH B. Investigation of tool chatter using local mean decomposition and artificial neural network during turning of Al 6061[J]. Soft Computing, 2021, 25: 11151-11174. |
86 | GUPTA P, SINGH B. Local mean decomposition and artificial neural network approach to mitigate tool chatter and improve material removal rate in turning operation[J]. Applied Soft Computing, 2020, 96: 106714. |
87 | MISHRA R, SINGH B. Stability analysis in milling process using spline based local mean decomposition (SBLMD) technique and statistical indicators[J]. Measurement, 2021, 174: 108999. |
88 | LI X, WAN S, HUANG X, et al. Milling chatter detection based on VMD and difference of power spectral entropy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7-8): 2051-2063. |
89 | YANG K, WANG G, DONG Y, et al. Early chatter identification based on an optimized variational mode decomposition[J]. Mechanical Systems and Signal Processing, 2019, 115: 238-254. |
90 | LIU X L, WANG Z X, LI M Y, et al. Feature extraction of milling chatter based on optimized variational mode decomposition and multi-scale permutation entropy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(9-10): 2849-2862. |
91 | ZHANG P F, GAO D, LU Y, et al. Online chatter detection in milling process based on fast iterative VMD and energy ratio difference[J]. Measurement, 2022, 194: 111060. |
92 | LIU T, DENG Z H, LUO C Y, et al. Chatter detection in camshaft high-speed grinding process based on VMD parametric optimization[J]. Measurement, 2022, 187: 110133. |
93 | ZHU L D, LIU C F. Recent progress of chatter prediction, detection and suppression in milling[J]. Mechanical Systems and Signal Processing, 2020, 143: 106840. |
94 | TANGJITSITCHAROEN S. In-process monitoring and detection of chip formation and chatter for CNC turning[J]. Journal of Materials Processing Technology, 2009, 209(10): 4682-4688. |
95 | LU K B, LIAN Z S, GU F S, et al. Model-based chatter stability prediction and detection for the turning of a flexible workpiece[J]. Mechanical Systems and Signal Processing, 2018, 100: 814-826. |
96 | CAO L, ZHANG X M, HUANG T, et al. An adaptive chatter signal enhancement approach for early fault diagnosis in machining process[J]. Procedia CIRP, 2019, 82: 308-313. |
97 | 张磊, 郑侃, 孙连军, 等. 基于小波包敏感频带选择的复材铣边颤振监测研究[J]. 机械工程学报, 2022, 58(3): 140-148. |
ZHANG L, ZHENG K, SUN L J, et al. Investigation on chatter monitoring of composite milling edge based on the selection of sensitive frequency band of wavelet packet[J]. Journal of Mechanical Engineering, 2022, 58(3): 140-148 (in Chinese). | |
98 | TRAN M Q, LIU M K, TRAN Q V. Milling chatter detection using scalogram and deep convolutional neural network[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3-4): 1505-1516. |
99 | SENER B, GUDELEK M U, OZBAYOGLU A M, et al. A novel chatter detection method for milling using deep convolution neural networks[J]. Measurement, 2021, 182: 109689. |
100 | CHERUKURI H, PEREZ-BERNABEU E, SELLES M A, et al. A neural network approach for chatter prediction in turning[J]. Procedia Manufacturing, 2019, 34(C): 885-892. |
101 | KUMAR S, SINGH B. Prediction of tool chatter in turning using RSM and ANN[J]. Materials Today: Proceedings, 2018, 5(11): 23806-23815. |
102 | ZHU W G, ZHUANG J C, GUO B S, et al. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9-10): 3881-3895. |
103 | 钱士才, 孙宇昕, 熊振华. 基于支持向量机的颤振在线智能检测[J]. 机械工程学报, 2015, 51(20): 1-8. |
QIAN S C, SUN Y X, XIONG Z H. Support vector machine based online intelligent chatter detection[J]. Journal of Mechanical Engineering, 2015, 51(20): 1-8 (in Chinese). | |
104 | CHEN Y, LI H Z, HOU L, et al. An intelligent chatter detection method based on EEMD and feature selection with multi-channel vibration signals[J]. Measurement, 2018, 127: 356-365. |
105 | LI D D, ZHANG W M, LI Y S, et al. Chatter identification of thin-walled parts for intelligent manufacturing based on multi-signal processing[J]. Advances in Manufacturing, 2021, 9(1): 22-33. |
106 | WAN S, LI X H, YIN Y J, et al. Milling chatter detection by multi-feature fusion and Adaboost-SVM[J]. Mechanical Systems and Signal Processing, 2021, 156: 107671. |
107 | REN Y K, DING Y. Online milling chatter identification using adaptive Hankel low-rank decomposition[J]. Mechanical Systems and Signal Processing, 2022, 169: 108758. |
108 | 齐静, 徐坤, 丁希仑. 机器人视觉手势交互技术研究进展[J]. 机器人, 2017, 39(4): 565-584. |
QI J, XU K, DING X L. Vision-based hand gesture recognition for human-robot interaction: a review[J]. Robot, 2017, 39(4): 565-584 (in Chinese). | |
109 | CHEN K H, ZHANG X, ZHAO Z, et al. Milling chatter monitoring under variable cutting conditions based on time series features[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9-10): 2595-2613. |
110 | 邵璐熠, 洪文. 基于二维极化特征的PolSAR图像决策分类[J]. 雷达学报, 2016, 5(6): 681-691. |
SHAO L Y, HONG W. Decision tree classification of PolSAR image based on two-dimensional polarimetric features[J]. Journal of Radars, 2016, 5(6): 681-691 (in Chinese). | |
111 | WANG R, NIU J B, SUN Y W. Chatter identification in thin-wall milling using an adaptive variational mode de-composition method combined with the decision tree model[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020: 095440542093370. |
112 | 周晓敏, 郝勇凯, 丛文韬, 等. 基于梯度提升决策树模型的冷连轧机颤振研究[J]. 振动与冲击, 2021, 40(13): 154-158. |
ZHOU X M, HAO Y K, CONG W T. Chatter analysis of cold tandem rolling mills based on gradient boosted decision tree[J]. Journal of Vibration and Shock, 2021, 40(13): 154-158 (in Chinese). | |
113 | SHI F, CAO H R, ZHANG X W, et al. A reinforced k-nearest neighbors method with application to chatter identification in high speed milling[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10844-10855. |
114 | YESILLI M C, KHASAWNEH F A, OTTO A. Chatter detection in turning using machine learning and similarity measures of time series via dynamic time warping[J]. Journal of Manufacturing Processes, 2022, 77: 190-206. |
115 | 韩振宇, 金鸿宇, 富宏亚. 基于ESPRIT频谱估计和隐马尔可夫模型的铣削颤振辨识系统建模[J]. 计算机集成制造系统, 2016, 22(8): 1937-1944. |
HAN Z Y, JIN H Y, FU H Y. Modeling of chatter recognition system in CNC milling based on ESPRIT and hiddlen Markov model[J]. Computer Integrated Manufacturing System, 2016, 22(8): 1937-1944 (in Chinese). | |
116 | OLEAGA I, PARDO C, ZULAIKA J J, et al. A machine learning based solution for chatter prediction in heavy duty milling machines[J]. Measurement, 2018, 128: 34-44. |
117 | 宫丽娜, 姜淑娟, 姜丽. 软件缺陷预测技术研究进展[J]. 软件学报, 2019, 30(10): 3090-3114. |
GONG L N, JIANG S J, JIANG L. Research progress of software defect prediction[J]. Journal of Software, 2019, 30(10): 3090-3114 (in Chinese). | |
118 | 张雪峰. 基于数据挖掘的铣削工艺系统动刚度研究[D]. 兰州: 兰州理工大学, 2021. |
ZHANG X F. Dynamic stiffness research of milling process system based on data mining[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese). | |
119 | DUN Y C, ZHU L D, YAN B L, et al. A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering[J]. Mechanical Systems and Signal Processing, 2021, 158: 107755. |
120 | WANG Z Q, CUNHA C D, RITOU M, et al. Comparison of K-means and GMM methods for contextual clustering in HSM[J]. Procedia Manufacturing, 2019, 28: 154-159. |
121 | DIAZ-ROZO J, BIELZA C, LARRAÑAGA P. Machine-tool condition monitoring with Gaussian mixture models-based dynamic probabilistic clustering[J]. Engineering Applications of Artificial Intelligence, 2020, 89: 103434. |
122 | 汪晓姗. 基于多分量信号分解的铣削颤振识别[D]. 上海: 上海交通大学, 2018. |
WANG X S. Chatter detection in milling process based on multicomponent signal decomposition method[D]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese). |
[1] | 郑伟, 王禹淞, 姜坤, 王奕迪. X射线脉冲星导航空间试验进展与展望[J]. 航空学报, 2024, 45(6): 28843-028843. |
[2] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[3] | 王禹淞, 王奕迪, 郑伟. 太阳信息辅助的脉冲相位估计方法及导航应用[J]. 航空学报, 2023, 44(S1): 727651-727651. |
[4] | 徐国栋, 张丹蕾, 徐振东. 脉冲星特征频率信号的到达时间处理方法[J]. 航空学报, 2023, 44(3): 526185-526185. |
[5] | 李治泽, 郑伟, 王奕迪. 基于等光子分布的变封装段脉冲星轮廓恢复方法[J]. 航空学报, 2023, 44(16): 328073-328073. |
[6] | 王涛, 高雪峰, 祝景萍, 董松, 孙连军, 郑侃. 机器人纵扭超声铣边颤振在线监测方法[J]. 航空学报, 2023, 44(13): 262-272. |
[7] | 贾金伟, 刘利民, 韩壮志, 解辉. 基于压缩感知的抗SDIF分选射频隐身信号设计及回波信号处理[J]. 航空学报, 2023, 44(13): 327934-327934. |
[8] | 孙秀一, 胡绍海, 马晓乐. 基于无监督深度学习的红外与可见光图像融合[J]. 航空学报, 2022, 43(S1): 726938-726938. |
[9] | 曲抒旋, 巩文斌, 孙小珠, 张东兴, 梁志强, 高丽敏, 吕卫帮. 基于碳纳米管薄膜的复合材料在线损伤监测[J]. 航空学报, 2022, 43(1): 424949-424949. |
[10] | 逯志宇, 王建辉, 巴斌, 王大鸣. 修正容积卡尔曼滤波数据域直接定位算法[J]. 航空学报, 2018, 39(9): 322031-322038. |
[11] | 张书瑞, 马晓峰, 盛卫星, 韩玉兵. 频率不变宽带波束形成权重系数的稀疏优化[J]. 航空学报, 2017, 38(7): 320794-320794. |
[12] | 虞翔, 李旦, 张建秋. 鲁棒成形极化敏感阵列波束的方法及极化估计[J]. 航空学报, 2017, 38(6): 320752-320752. |
[13] | 燕学智, 温艳鑫, 刘国红, 陈建. 基于稀疏表示和近似l0范数约束的宽带信号DOA估计[J]. 航空学报, 2017, 38(6): 320705-320705. |
[14] | 曾文浩, 朱晓华, 李洪涛, 马义耕, 陈诚. 一种稀疏阵列下的二维DOA估计方法[J]. 航空学报, 2016, 37(7): 2269-2275. |
[15] | 曾文浩, 朱晓华, 李洪涛, 陈诚, 马义耕. 基于矩阵填充的二维自适应波束形成算法[J]. 航空学报, 2016, 37(5): 1573-1579. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 898
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学