[1] ZHOU S T, LYU Z Z, LING C Y, et al. Meta-IS-AK algorithm for estimating global reliability sensitivity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 223088 (in Chinese). 周苏婷, 吕震宙, 凌春燕, 等. 可靠性全局灵敏度求解的Meta-IS-AK算法[J]. 航空学报, 2020, 41(1): 223088. [2] ZHAO X, LI H S. Global reliability sensitivity analysis using cross entropy method and space partition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 221570 (in Chinese). 赵翔, 李洪双. 基于交叉熵和空间分割的全局可靠性灵敏度分析[J]. 航空学报, 2018, 39(2): 221570. [3] HELTON J C, JOHNSON J D, SALLABERRY C J, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1175-1209. [4] EHRE M, PAPAIOANNOU I, STRAUB D. A framework for global reliability sensitivity analysis in the presence of multi-uncertainty[J]. Reliability Engineering & System Safety, 2020, 195: 106726. [5] LIU F C, WEI P F, ZHOU C C, et al. Time-dependent reliability and sensitivity analysis for planar motion mechanisms with revolution joint clearances[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 422141 (in Chinese). 刘付超, 魏鹏飞, 周长聪, 等. 含旋转铰间隙平面运动机构可靠性灵敏度分析[J]. 航空学报, 2018, 39(11): 422141. [6] SHI Z Y, LYU Z Z, LI L Y, et al. Cross-entropy importance sampling method based on adaptive Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 223123 (in Chinese). 史朝印, 吕震宙, 李璐祎, 等. 基于自适应Kriging代理模型的交叉熵重要抽样法[J]. 航空学报, 2020, 41(1): 223123. [7] CUI L J, LV Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution[J]. Science China Technological Sciences, 2010, 53(4): 1138-1145. [8] ZHANG H M, GU X H, DI Y. Reliability analysis method based on Tree Markov Chain model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 222643 (in Chinese). 张洪铭, 顾晓辉, 邸忆. 基于树形马氏链模型的可靠性分析方法[J]. 航空学报, 2019, 40(5): 222643. [9] LYU Z Z, LI L Y, SONG S F. Importance analysis theory and solution method of uncertain structural system[M]. Beijing: Science Press, 2015: 9-26 (in Chinese). 吕震宙, 李璐祎, 宋述芳. 不确定性结构系统的重要性分析理论与求解方法[M]. 北京: 科学出版社, 2015: 9-26. [10] CUKIER R I, FORTUIN C M, SHULER K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[J]. The Journal of Chemical Physics, 1973, 59(8): 3873-3878. [11] HELTON J C, DAVIS F J. Sampling-based methods[M]. In: Saltelli A, Chan K, Scott E M, editors. Sensitivity analysis. New York: Wiley, 2000: 101-153. [12] HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1): 23-69. [13] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280. [14] SOBOL I M, KUCHERENKO S. Derivative based global sensitivity measures and their link with global sensitivity indices[J]. Mathematics and Computers in Simulation, 2009, 79(10): 3009-3017. [15] SALTELLI A, MARIVOET J. Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques[J]. Reliability Engineering & System Safety, 1990, 28(2): 229-253. [16] SALTELLI A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3): 579-590. [17] SALTELLI A. Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145(2): 280-297. [18] LI G Y, HU J S, WANG S W, et al. Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions[J]. The Journal of Physical Chemistry A, 2006, 110(7): 2474-2485. [19] RATTO M, PAGANO A, YOUNG P. State Dependent Parameter metamodelling and sensitivity analysis[J]. Computer Physics Communications, 2007, 177(11): 863-876. [20] TARANTOLA S, GATELLI D, MARA T A. Random balance designs for the estimation of first order global sensitivity indices[J]. Reliability Engineering & System Safety, 2006, 91(6): 717-727. [21] SHEPHERD B E. Global sensitivity analysis. the primer by Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S[J]. Biometrics, 2009, 65(4): 1311-1312. [22] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784. [23] BORGONOVO E, CASTAINGS W, TARANTOLA S. Moment independent importance measures: New results and analytical test cases[J]. Risk Analysis, 2011, 31(3): 404-428. [24] LI L Y, LU Z Z, CHEN C. Moment-independent importance measure of correlated input variable and its state dependent parameter solution[J]. Aerospace Science and Technology, 2016, 48: 281-290. [25] WEI P F, LU Z Z, HAO W R, et al. Efficient sampling methods for global reliability sensitivity analysis[J]. Computer Physics Communications, 2012, 183(8): 1728-1743. [26] YUN W Y, LU Z Z, JIANG X, et al. An efficient method for estimating global sensitivity indices[J]. International Journal for Numerical Methods in Engineering, 2016, 108(11): 1275-1289. [27] YUN W Y, LU Z Z, JIANG X. An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy[J]. Reliability Engineering & System Safety, 2019, 187: 174-182. [28] JIANG X, WANG Y, MENG M. Efficient algorithm for analyzing moment-independent global reliability sensitivity[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 222414 (in Chinese). 蒋献, 王言, 孟敏. 失效概率矩独立全局灵敏度分析的高效算法[J]. 航空学报, 2019, 40(3): 222414. [29] SHI Y, LU Z Z, CHENG K, et al. Temporal and spatial multi-parameter dynamic reliability and global reliability sensitivity analysis based on the extreme value moments[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 117-129. [30] XU X B, LI S B, SONG X J, et al. The optimal design of industrial alarm systems based on evidence theory[J]. Control Engineering Practice, 2016, 46: 142-156. [31] YUN W Y, LU Z Z, HE P F, et al. An efficient method for estimating the parameter global reliability sensitivity analysis by innovative single-loop process and embedded Kriging model[J]. Mechanical Systems and Signal Processing, 2019, 133: 106288. [32] LING C Y, LU Z Z, CHENG K, et al. An efficient method for estimating global reliability sensitivity indices[J]. Probabilistic Engineering Mechanics, 2019, 56: 35-49. [33] WANG Z Q, JIA G F. Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters[J]. Reliability Engineering & System Safety, 2020, 197: 106783. [34] DITLEVSEN O, MADSEN H. Structural reliability methods[M]. New York: Wiley, 1996: 960. [35] HALDAR A, MAHADEVAN S. Probability, reliability and statistical methods in engineering design (haldar, mahadevan)[J]. Bautechnik, 2000, 77(5): 379-379. [36] HAJAGOS J G. Interval Monte Carlo as an alternative to second-order sampling for estimating ecological risk[J]. Reliable Computing, 2007, 13(1): 71-81. [37] JIANG C, ZHENG J, HAN X. Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: A review[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2485-2502. [38] CREMONA C, GAO Y. The possibilistic reliability theory: Theoretical aspects and applications[J]. Structural Safety, 1997, 19(2): 173-201. [39] CHO H, CHOI K K, GAUL N J, et al. Conservative reliability-based design optimization method with insufficient input data[J]. Structural and Multidisciplinary Optimization, 2016, 54(6): 1609-1630. [40] LI L Y, LU Z Z. A new algorithm for importance analysis of the inputs with distribution parameter uncertainty[J]. International Journal of Systems Science, 2016, 47(13): 3065-3077. [41] TANG Z C, ZUO M J, XIA Y J. Effect of truncated input parameter distribution on the integrity of safety instrumented systems under epistemic uncertainty[J]. IEEE Transactions on Reliability, 2017, 66(3): 735-750. [42] CHABRIDON V, BALESDENT M, BOURINET J M, et al. Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty[J]. Reliability Engineering & System Safety, 2018, 178: 164-178. [43] LYU Z Z, SONG S F, LI L Y. Reliability design basis of structural mechanism[M]. Xi’an: Northwestern Polytechnical University Press, 2019: 67-106 (in Chinese). 吕震宙, 宋述芳, 李璐祎. 结构/机构可靠性设计基础[M]. 西安: 西北工业大学出版社, 2019: 67-106. |