[1] YOU X H, WANG C X, HUANG J, et al. Towards 6G wireless communication networks:Vision, enabling technologies, and new paradigm shifts[J].Science China Information Sciences, 2020, 64(1):1-74. [2] 王兆瑞, 刘亮, 李航, 等. 面向6G物联网的智能反射表面设计[J].物联网学报, 2020, 4(2):84-95. WANG Z R, LIU L, LI H, et al. Intelligent reflecting surface design for 6G-assisted Internet of Things[J].Chinese Journal on Internet of Things, 2020, 4(2):84-95(in Chinese). [3] 陶琴, 钟财军, 张朝阳. 面向无源物联网的环境反向散射通信技术[J].物联网学报, 2019, 3(2):28-34. TAO Q, ZHONG C J, ZHANG Z Y. Ambient backscatter communications technology for batteryless IoT[J].Chinese Journal on Internet of Things, 2019, 3(2):28-34(in Chinese). [4] 张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J].通信学报, 2019, 40(1):141-148. ZHANG P, NIU K, TIAN H, et al. Technology prospect of 6G mobile communications[J].Journal on Communications, 2019, 40(1):141-148(in Chinese). [5] ZHAO J. A survey of intelligent reflecting surfaces (IRSs):Towards 6G wireless communication networks[DB/OL]. arXiv preprint:1907.04789,2019. [6] KUDATHANTHIRIGE D, GUNASINGHE D, AMARASURIYA G. Performance analysis of intelligent reflective surfaces for wireless communication[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020:1-6. [7] 姚建文, 王楠. 智能反射面:大有前景的6G技术[J].电信快报, 2020(7):8-13. YAO J W, WANG N. Intelligent reflecting surface:A promising technique for 6G[J].Telecommunications Information, 2020(7):8-13(in Chinese). [8] 王公仆, 熊轲, 刘铭, 等. 反向散射通信技术与物联网[J].物联网学报, 2017, 1(1):67-75. WANG G P, XIONG K, LIU M, et al. Backscatter communication technology and Internet of Things[J].Chinese Journal on Internet of Things, 2017, 1(1):67-75(in Chinese). [9] 伍明江, 类先富, 李里, 等. 面向6G物联网的主被动互惠传输关键技术[J].物联网学报, 2020, 4(1):45-51. WU M J, LEI X F, LI L, et al. Key technologies of symbiotic transmission for 6G Internet of Things[J].Chinese Journal on Internet of Things, 2020, 4(1):45-51(in Chinese). [10] ZOU Y Z, GONG S M, XU J, et al. Wireless powered intelligent reflecting surfaces for enhancing wireless communications[J].IEEE Transactions on Vehicular Technology, 2020, 69(10):12369-12373. [11] LI L X, SUN Y, CHENG Q Q, et al. Optimal trajectory and downlink power control for multi-type UAV aerial base stations[J].Chinese Journal of Aeronautics, 2021, 34(9):11-23. [12] 刘海涛, 顾新宇, 方晓钰, 等. 频率选择性衰落信道DS-CDMA无人机中继通信系统航迹规划[J].航空学报, 2019, 40(7):322633. LIU H T, GU X Y, FANG X Y, et al. Path panning for UAV relay communication systems with DS-CDMA over frequency selective fading channel[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322633(in Chinese). [13] 李振亚, 竺小松, 尹成友, 等. 基于角度分集的机载超宽带MIMO天线设计[J].航空学报, 2019, 40(5):322552. LI Z Y, ZHU X S, YIN C Y, et al. Design of airborne ultra wideband MIMO antenna based on angle diversity[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(5):322552(in Chinese). [14] JIA H C, ZHONG J, JANARDHANAN M N, et al. Ergodic capacity analysis for FSO communications with UAV-equipped IRS in the presence of pointing error[C]//2020 IEEE 20th International Conference on Communication Technology (ICCT). Piscataway:IEEE Press, 2020:949-954. [15] LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials[J].Nature Materials, 2012, 11(11):936-941. [16] YANG H H, CAO X Y, YANG F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J].Scientific Reports, 2016, 6:35692. [17] LIASKOS C, NIE S, TSIOLIARIDOU A, et al. A new wire-less communication paradigm through software-controlled metasurfaces[J].IEEE Communications Magazine, 2018, 56(9):162-169. [18] SU J X, LU Y, ZHANG H, et al. Ultra-wideband, wide angle and Polarization-insensitive specular reflection reduction by metasurface based on Parameter-adjustable Meta-Atoms[J].Scientific Reports, 2017, 7:42283. [19] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable in-telligent surfaces:How it works, state of research, and the road ahead[J].IEEE Journal on Selected Areas in Communications, 2020, 38(11):2450-2525. [20] SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors[J].Nature Materials, 2009, 8(6):494-499. [21] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamateri-als[J].Light:Science & Applications, 2014, 3(10):e218. [22] HE Z Q, YUAN X J. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J].IEEE Wireless Communications Letters, 2020, 9(2):210-214. [23] HU S, RUSEK F, EDFORS O. Beyond massive MIMO:The potential of positioning with large intelligent surfaces[J].IEEE Transactions on Signal Processing, 2018, 66(7):1761-1774. [24] NADEEM Q U A, KAMMOUN A, CHAABAN A, et al. Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems[J].IEEE Transactions on Wireless Communications, 2020, 19(12):7748-7764. [25] JUNG M, SAAD W, JANG Y, et al. Performance analysis of large intelligent surfaces (LISs):Asymptotic data rate and channel hardening effects[J].IEEE Transactions on Wireless Communications, 2020, 19(3):2052-2065. [26] PAN C H, REN H, WANG K Z, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J].IEEE Transactions on Wireless Communications, 2020, 19(8):5218-5233. [27] TAHA A, ALRABEIAH M, ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J].IEEE Access, 2021, 9:44304-44321. [28] TAHA A, ALRABEIAH M, ALKHATEEB A. Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019:1-6. [29] HU S, RUSEK F, EDFORS O. Beyond massive MIMO:The potential of data transmission with large intelligent surfaces[J].IEEE Transactions on Signal Processing, 2018, 66(10):2746-2758. [30] HU S, RUSEK F, EDFORS O. The potential of using large antenna arrays on intelligent surfaces[C]//2017 IEEE 85th Vehicular Technology Conference (VTC Spring). Piscataway:IEEE Press, 2017:1-6. [31] HU S, RUSEK F, EDFORS O. Capacity degradation with modeling hardware impairment in large intelligent surface[C]//2018 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2018:1-6. [32] HU S, RUSEK F, EDFORS O. Cramér-Rao lower bounds for positioning with large intelligent surfaces[C]//2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Piscataway:IEEE Press, 2017:1-6. [33] JUNG M, SAAD W, JANG Y, et al. Reliability analysis of large intelligent surfaces (LISs):rate distribution and outage probability[J].IEEE Wireless Communications Letters, 2019, 8(6):1662-1666. [34] TAN X, SUN Z, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2018:270-278. [35] TAN X, SUN Z, JORNET J M, et al. Increasing indoor spectrum sharing capacity using smart reflect-array[C]//2016 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2016:1-6. [36] NIE S, JORNET J M, AKYILDIZ I F. Intelligent environments based on ultra-massive mimo platforms for wireless communication in millimeter wave and terahertz bands[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2019:7849-7853. [37] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J].IEEE Access, 2019, 7:116753-116773. [38] HUANG C W, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J].IEEE Transactions on Wireless Communications, 2019, 18(8):4157-4170. [39] MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2019:4659-4663. [40] WU Q Q, ZHANG R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J].IEEE Wireless Communications Letters, 2020, 9(5):586-590. [41] WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J].IEEE Transactions on Wireless Communications, 2019, 18(11):5394-5409. [42] FU M, ZHOU Y, SHI Y M. Intelligent reflecting surface for downlink non-orthogonal multiple access networks[C]//2019 IEEE Globecom Workshops (GC Wkshps). Piscataway:IEEE Press, 2019:1-6. [43] YU X H, XU D F, SCHOBER R. MISO wireless communication systems via intelligent reflecting surfaces:(invited paper)[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway:IEEE Press, 2019:735-740. [44] NADEEM Q U A, ALWAZANI H, KAMMOUN A, et al. Intelligent reflecting surface-assisted multi-user MISO communication:Channel estimation and beamforming design[J].IEEE Open Journal of the Communications Society, 2020, 1:661-680. [45] CUI M, ZHANG G C, ZHANG R. Secure wireless communication via intelligent reflecting surface[J].IEEE Wireless Communications Letters, 2019, 8(5):1410-1414. [46] YU X H, XU D F, SCHOBER R. Enabling secure wireless communications via intelligent reflecting surfaces[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019:1-6. [47] CHEN J, LIANG Y C, PEI Y Y, et al. Intelligent reflecting surface:A programmable wireless environment for physical layer security[J].IEEE Access, 2019, 7:82599-82612. [48] SHEN H, XU W, GONG S L, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J].IEEE Communications Letters, 2019, 23(9):1488-1492. [49] GUAN X R, WU Q Q, ZHANG R. Intelligent reflecting surface assisted secrecy communication:is artificial noise helpful or not?[J].IEEE Wireless Communications Letters, 2020, 9(6):778-782. [50] FANG S S, CHEN G J, LI Y H. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J].IEEE Wireless Communications Letters, 2021, 10(2):276-280. [51] ZHOU G, PAN C H, REN H, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J].IEEE Transactions on Signal Processing, 2020, 68:5092-5106. [52] LIU J X, XIONG K, LU Y, et al. Energy efficiency in secure IRS-aided SWIPT[J].IEEE Wireless Communications Letters, 2020, 9(11):1884-1888. [53] GONG S M, LU X, HOANG D T, et al. Toward smart wireless communications via intelligent reflecting surfaces:A contemporary survey[J].IEEE Communications Surveys & Tutorials, 2020, 22(4):2283-2314. [54] HAN Y T, ZHANG S W, DUAN L J, et al. Cooperative double-IRS aided communication:Beamforming design and power scaling[J].IEEE Wireless Communications Letters, 2020, 9(8):1206-1210. [55] LYU J B, ZHANG R. Spatial throughput characterization for intelligent reflecting surface aided multiuser system[J].IEEE Wireless Communications Letters, 2020, 9(6):834-838. [56] WANG Z R, LIU L, CUI S G. Intelligent reflecting surface assisted massive MIMO communications[C]//2020 IEEE 21 st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE, 2020:1-5. [57] ZHOU G, PAN C H, REN H, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J].IEEE Transactions on Signal Processing, 2020, 68:5092-5106. [58] ZHOU G, PAN C H, REN H, et al. Robust beamforming design for intelligent reflecting surface aided MISO communication systems[J].IEEE Wireless Communications Letters, 2020, 9(10):1658-1662. [59] TANG Y Z, MA G G, XIE H L, et al. Joint transmit and reflective beamforming design for IRS-assisted multiuser MISO SWIPT systems[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020:1-6. [60] LI Q, CUI X Y, WU S X, et al. Sum rate maximization for multiuser MISO downlink with intelligent reflecting surface[DB/OL]. arXiv preprint:1912.09315V2,2019 [61] CAI Y X, WEI Z Q, HU S K, et al. Resource allocation for power-efficient IRS-assisted UAV communications[C]//2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020:1-7. [62] YANG G, XU X Y, LIANG Y C. Intelligent reflecting surface assisted non-orthogonal multiple access[C]//2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020:1-6. [63] YUE D W, NGUYEN H H, SUN Y. Analysis of intelligent reflecting surface-assisted mmWave doubly massive-MIMO communications[C]//2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). Piscataway:IEEE Press,2021:498-503. [64] GUO H Y, LIANG Y C, CHEN J, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]//2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019:1-6. [65] ZHOU G, PAN C H, REN H, et al. Intelligent reflecting surface aided multigroup multicast MISO communication systems[J].IEEE Transactions on Signal Processing, 2020, 68:3236-3251. [66] WU Q Q, ZHANG R. Towards smart and reconfigurable environment:Intelligent reflecting surface aided wireless network[J].IEEE Communications Magazine, 2020, 58(1):106-112. [67] MA X Y, CHEN Z, CHEN W J, et al. Joint channel estimation and data rate maximization for intelligent reflecting surface assisted terahertz MIMO communication systems[J].IEEE Access, 2020, 8:99565-99581. [68] QIAO J P, ALOUINI M S. Secure transmission for intelligent reflecting surface-assisted mmWave and terahertz systems[J].IEEE Wireless Communications Letters, 2020, 9(10):1743-1747. [69] MOHAMED Z, AÏSSA S. Leveraging UAVs with intelligent reflecting surfaces for energy-efficient communications with cell-edge users[C]//2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020:1-6. [70] BAI T, PAN C H, DENG Y S, et al. Latency minimization for intelligent reflecting surface aided mobile edge computing[J].IEEE Journal on Selected Areas in Communications, 2020, 38(11):2666-2682. [71] KHOSHAFA M H, NGATCHED T M N, AHMED M H. Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications[J].IEEE Communications Letters, 2021, 25(5):1443-1447. [72] ZHANG C Y, CHEN W, HE C L, et al. Throughput maximization for intelligent reflecting surface-aided device-to-device communications system[J].Journal of Communications and Information Networks, 2020, 5(4):403-410. [73] MAKARFI A U, RABIE K M, KAIWARTYA O, et al. Physical layer security in vehicular networks with reconfigurable intelligent surfaces[C]//2020 IEEE 91 st Vehicular Technology Conference (VTC2020-Spring). Piscataway:IEEE Press, 2020:1-6. [74] ZHANG Z, LV L, WU Q Q, et al. Robust and secure communications in intelligent reflecting surface assisted NOMA networks[J].IEEE Communications Letters, 2021, 25(3):739-743. [75] WU Q Q, ZHANG R. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J].IEEE Journal on Selected Areas in Communications, 2020, 38(8):1735-1748. [76] ZENG Y, WU Q Q, ZHANG R. Accessing from the sky:A tutorial on UAV communications for 5G and beyond[J].Proceedings of the IEEE, 2019, 107(12):2327-2375. [77] LI L X, SUN Y, CHENG Q Q, et al. Optimal trajectory and downlink power control for multi-type UAV aerial base stations[J].Chinese Journal of Aeronautics, 2021, 34(9):11-23. [78] GU J C, DING G R, XU Y T, et al. Proactive optimization of transmission power and 3D trajectory in UAV-assisted relay systems with mobile ground users[J].Chinese Journal of Aeronautics, 2021, 34(3):129-144. [79] WU G F, GAO X G, FU X W, et al. Mobility control of unmanned aerial vehicle as communication relay in airborne multi-user systems[J].Chinese Journal of Aeronautics, 2019, 32(6):1520-1529. [80] WEI Z Q, CAI Y X, SUN Z, et al. Sum-rate maximization for IRS-assisted UAV OFDMA communication systems[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020:1-7. [81] GE L H, DONG P H, ZHANG H, et al. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications[J].IEEE Access, 2020, 8:78702-78712. [82] MA D, DING M, HASSAN M. Enhancing cellular communications for UAVs via intelligent reflective surface[C]//2020 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2020:1-6. [83] ZHANG S W, ZHANG R. Capacity characterization for intelligent reflecting surface aided MIMO communication[J].IEEE Journal on Selected Areas in Communications, 2020, 38(8):1823-1838. [84] WU Q Q, ZHANG R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J].IEEE Transactions on Communications, 2020, 68(3):1838-1851. [85] ZHU Z Y, CHU Z, WANG N, et al. Energy harvesting fairness in AN-aided secure MU-MIMO SWIPT systems with cooperative jammer[C]//2018 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2018:1-6. [86] WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[C]//IEEE Transactions on Wireless Communications. Piscataway:IEEE Press,2018:5394-5409. [87] JUNG M, SAAD W, JANG Y, et al. Reliability analysis of large intelligent surfaces (LISs):Rate distribution and outage probability[J].IEEE Wireless Communications Letters, 2019, 8(6):1662-1666. [88] PUGLIELLI A, NAREVSKY N, LU P P, et al. A scalable massive MIMO array architecture based on common modules[C]//2015 IEEE International Conference on Communication Workshop (ICCW). Piscataway:IEEE Press, 2015:1310-1315. [89] TANG W K, CHEN M Z, CHEN X Y, et al. Wireless communications with reconfigurable intelligent surface:path loss modeling and experimental measurement[J].IEEE Transactions on Wireless Communications, 2021, 20(1):421-439. |