[1] 陈培儒. 电推进飞机:开启航空业的新时代[J]. 大飞机, 2018(11):44-48. CHEN P R. Electric propulsion aircraft:A new era in aviation[J]. Jetliner, 2018(11):44-48(in Chinese). [2] 廖忠权. 航空混合电推进系统发展研究[J]. 航空动力, 2018(2):45-50. LIAO Z Q. Research on the development of hybrid electric propulsion system[J]. Aerospace Power, 2018(2):45-50(in Chinese). [3] LUONGO C A, MASSON P J, NAM T, et al. Next generation more-electric aircraft:a potential application for HTS superconductors[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3):1055-1068. [4] PETERS D A, MCKAY D R. The current decline in oil:investment and macroeconomic considerations[J]. Plastic Surgery, 2015, 23(1):55-56. [5] PORNET C, ISIKVEREN A T. Conceptual design of hybrid-electric transport aircraft[J]. Progress in Aerospace Sciences, 2015, 79:114-135. [6] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese). [7] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese). [8] WELSTEAD J, FELDER J L. Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [9] FALCK R D, CHIN J, SCHNULO S L, et al. Trajectory optimization of electric aircraft subject to subsystem thermal constraints[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston,:AIAA, 2017. [10] HENDRICKS E S, CHAPMAN J, ARETSKIN-HARITON E. Load flow analysis with analytic derivatives for electric aircraft design optimization[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [11] CHAPMAN J W, LITT J S. An approach for utilizing power flow modeling for simulations of hybrid electric propulsion systems[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston:AIAA, 2018. [12] WIPKE K B, CUDDY M R, BURCH S D. ADVISOR 2.1:A user-friendly advanced powertrain simulation using a combined backward/forward approach[J]. IEEE Transactions on Vehicular Technology, 1999, 48(6):1751-1761. [13] SHANKAR R, MARCO J, ASSADIAN F. The novel application of optimization and charge blended energy management control for component downsizing within a plug-in hybrid electric vehicle[J]. Energies, 2012, 5(12):4892-4923. [14] AVANZINI G, DE MATTEIS G, de SOCIO L M. Two-timescale-integration method for inverse simulation[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(3):395-401. [15] GUZZELLA L, SCIARRETTA A. Vehicle propulsion systems:introduction to modeling and optimization[M]. 2nd ed. Berlin:Springer, 2007. [16] DONATEO T, FICARELLA A, SPEDICATO L. Development and validation of a software tool for complex aircraft powertrains[J]. Advances in Engineering Software, 2016, 96:1-13. [17] SADEY D J, CSANK J, HANLON P A, et al. A generalized power system architecture sizing and analysis framework[C]//2018 Joint Propulsion Conference.. Reston:AIAA, 2018. [18] LI Q, BURGOS R, BOROYEVICH D. Hierarchical weight optimization design of aircraft power electronics systems using metaheuristic optimization methods[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston:AIAA, 2018 [19] AIDAN P D, DAVID K H, and JEFFERY H L. Electric propulsion architecture assessment via signorial programming[C]//AIAA/IEEE Electric Aircraft Technologies Symposium. Reston:AIAA, 2018. [20] 刘天琪. 现代电力系统分析理论与方法[M]. 北京:中国电力出版社,2016. LIU T Q. Analysis theory and method of modern power system[M]. Beijing:China Electric Power Press, 2016(in Chinese). [21] 朱宝鎏. 无人飞机空气动力学[M]. 北京:航空工业出版社, 2006. ZHU B L. UAV Aerodynamics[M]. Beijing:Aviation Industry Press, 2006.10(in Chinese). [22] HOBURG W, ABBEEL P. Geometric programming for aircraft design optimization[J]. AIAA Journal, 2014, 52(11):2414-2426. [23] SOBIES S, JAROSLAW, ALAN M, et al. Multidisciplinary design optimization supported by knowledge-based engineering[M]. New York:John Wiley & Sons, 2015. [24] BURNELL E, HORURG W. GPkit software for geometric programming (Version 0.7.0, 2018)[EB/OL]. https://github.com/converxengineering/gpkit. [25] FARVE N. Design of a low-mass high-torque brushless motor for application in quadruped robotics[D]. Cambridge, MA:Massachusetts Institute of Technology,2012. [26] OFORI T J. Permanent-magnet synchronous motors and associated power electrics for direct-drive vehicle propulsion[D]. Cambridge, MA:Massachusetts Institute of Technology, 1996. [27] BROWN G. Weights and efficiencies of electric components of a turboelectric aircraft propulsion system[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [28] AKSUGUR M, INALHAN G. Design methodology of a hybrid propulsion driven electric powered miniature tailsitter unmanned aerial vehicle[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1-4):505-529. |