赵陈伟1, 毛军逵1,2, 屠泽灿1, 邱鹏霖1
收稿日期:
2020-04-22
修回日期:
2020-05-12
出版日期:
2021-06-15
发布日期:
1900-01-01
通讯作者:
毛军逵
E-mail:mjkpe@nuaa.edu.cn
基金资助:
ZHAO Chenwei1, MAO Junkui1,2, TU Zecan1, QIU Penglin1
Received:
2020-04-22
Revised:
2020-05-12
Online:
2021-06-15
Published:
1900-01-01
Supported by:
摘要: 以陶瓷基复合材料(CMC)为代表的纤维增韧复合材料具有耐高温、高强度、低密度等特点,在航空燃气涡轮发动机、火箭发动机等动力装置中逐步得到工程应用。CMC材料因其自身特殊的结构特点,使得其导热系数呈现出明显的各向异性,进而导致传统基于均质金属材料的热分析方法将不再适用于CMC热端部件。总结了单向纤维、2/2.5维编织纤维、3维编织纤维等典型纤维增韧CMC材料导热系数预测方法的研究进展和CMC热端部件热分析方法的研究现状。综合来看,如何在热分析中高效引入CMC材料微观尺度信息,建立起精度高且工程可应用的CMC热端部件跨尺度热分析方法是目前亟需突破的技术难题。面向未来CMC热端部件的工程应用,基于三维微观结构特征重构的热分析模型是建立CMC热端部件高精度热分析方法的关键,同时热分析还需要同制造工艺、力学行为分析等进一步紧密结合。
中图分类号:
赵陈伟, 毛军逵, 屠泽灿, 邱鹏霖. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6): 24126-024126.
ZHAO Chenwei, MAO Junkui, TU Zecan, QIU Penglin. Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 24126-024126.
[1] DAWSON D M. Ceramic materials in aerospace[M]. Berlin:Springer Netherlands, 1995:183-201. [2] AVESTON J. In properties of fiber composite[C]//National Physical Laboratory Conference Proceeding. London:National Physical Laboratory, 1971:63-74. [3] TAMURA T, NAKAMURA T. Research of CMC application to turbine components[J]. IHI Engineering Review, 2005, 38:58-62. [4] DICARLO J A, MORSCHER G N, BHATT R T. Progress in SiC/SiC ceramic composite development for gas turbine hot section components under NASA EPM and UEET programs[C]//Proceedings of ASME Turbo Expo 2002. Amsterdam:ASME, 2002. [5] 高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014(6):14-21. GAO T, HONG Z L, YANG J. Application and prospect of ceramic matrix composite components for commercial aircraft engine[J]. Aeronautical Manufacturing Technology, 2014(6):14-21(in Chinese). [6] VERRILLI M, CALOMINO A, ROBINSON R C, et al. Ceramic matrix composite vane sub-element testing in a gas turbine environment[C]//Proceedings of ASME Turbo Expo 2004:Power for Land Sea and Air. Vienna:ASME, 2004. [7] SINGH M. Advanced ceramic matrix composites for high temperature applications[C]//Plenary Lecture at the International Symposium on High Temperature Ceramics. Selb:Germany Ceramic Society, 2005. [8] MURTHY P L N, NEMETH N N, BREWER D N, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J]. Composites Part B:Engineering, 2008, 39(4):694-703. [9] BEYER S, SCHMIDT W S, QUERING K, et al. Technology status of fuel cooled ceramic matrix composites for dual-mode ramjet and liquid rocket engine applications[C]//AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2012. [10] 文生琼, 何爱杰. 陶瓷基复合材料在航空发动机热端部件上的应用[J]. 航空制造技术, 2009(z1):4-7. WEN S Q, HE A J. Application of CMC on thermal parts of aeroengine[J]. Aeronautical Manufacturing Technology, 2009(z1):4-7(in Chinese). [11] NORRIS G, 张正国. F136发动机试验陶瓷基复合材料的潜在应用[J]. 国际航空, 2009(5):66. NORRIS G, ZHANG G Z. Potential application of ceramic matrix composites for F136 engine test[J]. International Aviation, 2009(5):66(in Chinese). [12] 李杰. 复合材料在新一代商用发动机上的应用与发展[J]. 航空科学技术, 2012(1):18-22. LI J. Application and Development of composite materials for GE new generation civil aeroengines[J]. Aeronautical Science and Technology, 2012(1):18-22(in Chinese). [13] 薛忠民. 走向核心——航空发动机热端部件扩大陶瓷基复合材料应用[J]. 玻璃钢/复合材料, 2017(1):124-125. XUE Z M. Towards the core-expanding the application of ceramic matrix composite materials for hot end components of aeroengine[J]. Fiber Reinforced Plastics/Composites, 2017(1):124-125(in Chinese). [14] 吴大观. 关于新版综合高性能涡轮发动机技术计划——兼谈航空发动机研制中"基础技术"和"验证机"的重要作用[J]. 航空发动机, 2003, 29(2):1-4. WU D G. Recent progress of IHPTET——The role of pervasive technology and demonstrator in aircraft engine development[J]. Aeroengine, 2003, 29(2):1-4(in Chinese). [15] ZHU D, MILLER R A. Hafnia-based materials development for advanced thermal environmental barrier coating applications:NASA/TM-2004-212729[R]. Cleveland:NASA Glenn Research Center, 2004. [16] ZHU D, BANSAL N P, MILLER R A. Advanced oxide material systems for 1 650℃ thermal/environmental barrier coating applications:NASA/TM-2004-213219[R]. Seattle:American Ceramic Society, 2004. [17] STEPHAN S W. Evaluation of ultra-high temperature ceramics and coating systems for their application in orbital and air-breathing propulsion[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2012. [18] RYO I, YURARO A, YUKI K, et al. Development of short and continuous carbon fiber-reinforced zrb2-sic-zrc matrix composites for thermal protection systems[J]. Ceramics International, 2018, 44(13):15858-15867. [19] 卢国锋, 乔生儒, 弓满锋, 等. C/Si-C-N复合材料的制备及其氧化行为研究[J]. 材料工程, 2010(3):17-21. LU G F, QIAO S R, GONG M F, et al. Fabrication and oxidation behavior of C/Si-C-N composite[J]. Journal of Materials Engineering, 2010(3):17-21(in Chinese). [20] 余惠琴, 闫联生. CVD-Si3 N4陶瓷及其复合材料氧化行为研究进展[J]. 宇航材料工艺, 2004, 33(3):13-16. YU H Q, YAN L S. Oxidation behavior of CVD-Si3 N4 ceramic and its composite[J]. Aerospace Materials and Technology, 2004, 33(3):13-16(in Chinese). [21] WEI Y Q, YANG Y, LIU M, et al. Oxidation mechanism and kinetics of SiBCN/HfC ceramic composites at high temperatures[J/OL]. Journal of Materials Research and Technology, (2019-12-20)[2020-06-17]. https://www.scencedrect.com/doi/10.1016/j.jmrt.2019.12.060. [22] CORMAN G. Materials research for manufacturing[M]. UPADHYAY R, SINHA S. Berlin:Springer International Publishing, 2016:59-91. [23] UNAL O, ECKEL A J, LAABS F C. The 1 400℃ oxidation effect on microstructure strength and cyclic life of SiC/SiC composites[J]. Scripta Metallurgica, 1995, 33(6):983-988. [24] MUTNURI B. Thermal conductivity characterization of composite materials[D]. West Virginia:West Virginia University, 2006:1-71. [25] TIAN T, KEVIN D C. Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials[J]. International Journal of Heat and Mass Transfer, 2012, 55(23-24):6530-6537. [26] BEHZAD T, SAIN M. Measurement and prediction of thermal conductivity for hemp fiber reinforced compo-sites[J]. Polymer Engineering and Science, 2007, 47(7):977-983. [27] 李专, 肖鹏, 熊翔, 等. C/C-Si复合材料的导热性能及其影响因[J]. 中南大学学报(自然科学版), 2013, 44(1):41-45. LI Z, XIAO P, XIONG X, et al. Thermal conductivity of C/C-SiC composites and its influence factors[J]. Journal of Central South University (Science and Technology), 2013, 44(1):41-45(in Chinese). [28] 王亦菲, 刘伟峰, 马青松. PIP法制备SiCf/SiC复合材料导热性能[J]. 稀有金属材料与工程, 2009, 38(z2):466-469. WANG Y F, LIU W F, MA Q S. Effects on the thermal conductivity properties of SiCf/SiC composites manufactured by PIP process[J]. Rare Metal Materials and Engineering, 2009, 38(z2):466-469(in Chinese). [29] 孙志刚, 宋迎东, 高希光, 等.细观结构对复合材料热膨胀系数的影响研究[J]. 应用力学报, 2004, 21(2):146-150. SUN Z G, SONG Y D, GAO X G, et al. Influence of micro-structural geometry on thermal expansion coefficient of composites[J]. Chinese Journal of Applied Mechanics, 2004, 21(2):146-150(in Chinese). [30] PITCHUMANI R. Evaluation of thermal conductivities of disordered composite media using a fractal model[J]. Heat Transfer, 1999, 121(1):163-167. [31] XU Y B, YAGI K. Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement[J]. Computational Materials Science, 2004, 30(3-4):242-250. [32] LIU Z G, ZHANG H G, LU Z X, et al. Investigation on the thermal conductivity of 3-dimensional and 4-diret-nal braided composites[J]. Chinese Journal of Aeronautics, 2007, 20(4):327-331. [33] HU C X, LI H J, ZHANG S Y, et al. Numerical simulation on thermal expansion coefficient of 3D braided C/C composites[J]. Rare Metals, 2014, 33(4):99-106. [34] HEIDMANN J D, KASSAB A J, DIVO E A, et al. Conjugate heat transfer effects on a realistic film-cooled turbine vane[C]//ASME Turbo Expo Collocated with the International Joint Power Generation Conference. Atlanta:International Gas Turbine Institute, 2003:361-371. [35] YUSOP N M, ALI A H, ABDULLAH M Z. Conjugate film cooling of a new multi-layer convex surface of turbine blades[J]. International Communications in Heat and Mass Transfer, 2013, 45:86-94. [36] MA J, XU Y, ZHANG L, et al. Microstructure characterization and tensile of 2.5D C/SiC composite fabricated by chemical vapor infiltration[J]. Scripta Materialia, 2006, 54(11):1967-1971. [37] 刘浩龙. 2.5维机织风扇静子叶片/机匣连接结构静强度分析方法研究[D]. 南京:南京航空航天大学, 2014:1-60. LIU H L. Strength analysis of 2.5 dimensional woven fan vane/casing connectional structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:1-60(in Chinese). [38] 关天茹. 2.5D编织石英/SiO2陶瓷基复合材料细观模型构建与实验验证[D]. 南京:南京航空航天大学, 2012:8-20. GUAN T R. Micro geometry and mechanical model and experimental study of 2.5D braided quartz/SiO2 ceramic matrix composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:8-20(in Chinese). [39] 徐瑞. 单向纤维增强陶瓷基复合材料导热系数计算方法[D]. 南京:南京航空航天大学,2013:1-67. XU R. Calculation method of thermal conductivity of unidirectional fiber reinforced ceramic matrix composite[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:1-67(in Chinese). [40] 张芳芳. 编织复合材料力学性能及热物理性能预报研究[D]. 秦皇岛:燕山大学, 2014:1-100. ZHANG F F. Prediction of mechanical and thermos-physical properties of braided composites[D]. Qinhuangdao:Yanshan University, 2014:1-100(in Chinese). [41] BILISIK K. Three-dimensional braiding for composites:a review[J]. Textile Research Journal, 2013, 83(13):1414-1436. [42] BOISSE P. Advances in composites manufacturing and process design[M]. Amsterdam:Elsevier, 2015:23. [43] CHEN X. Advances in 3D textiles[M]. Amsterdam:Elsevier, 2015:1-15. [44] 刘振国, 林强, 亚纪轩, 等. 三维全五向编织耳片接头力学性能试验研究[J]. 航空学报, 2016, 37(7):2225-2233. LIU Z G, LIN Q, YA J X, et al. Experimental research on mechanical properties of 3D full 5-direactional braided composites lugs[J]. Acta Aeronautica et Astrnautica Sinica, 2016, 37(7):2225-2233(in Chinese). [45] GLASS D E. Ceramic matrix composite thermal protection systems and hot structures for hypersonic vehicles[C]//15th AIAA Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008:1-36. [46] TONGLY, MOURITZAP, BANNISTERMK. 3D fiber reinforced polymer composites[M]. Amsterdam:Elsevier, 2002:1-21. [47] HILL R J. Elastic properties of reinforced solids some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5):357-72. [48] BABUSKA I. Homogenization approach in engineering[J]. Lecture Note in Economics and Mathematical Systems, 1976, 134(134):137-153. [49] OLEINIK O A, SHAMAEV A S, YOSIFIAN G A. Mathematical problems in Elasticity and Homogenization[D]. New York:North-Holland, 1992:1-80. [50] SRINIVASAN K. Homogenization of elliptic eigenvalue problems part I[J]. Applied Mathematics and Optimization, 1979, 5(1):153-167. [51] THORNBURG J D, PEARS C D. Prediction of the thermal conductivity of filled and reinforced plastics[C]//ASME Turbo Expo 1965:Power for Land, Sea, and Air. Washington:ASME, 1965. [52] SPRINGER G S, TSAI S W. Thermal conductivities of unidirectional materials[J]. Journal of Composite Materials, 1967, 1(2):166-173. [53] ZOU M, YU B, ZHANG D, et al. Study on optimization of transverse thermal conductivities of unidirectional composites[J]. Journal of Heat Transfer, 2003, 125(6):980-987. [54] FALEH A, AL-SULAIMAN, MOKHEIMER E M A. Prediction of the thermal conductivity of the constituents of fiber reinforced composite laminates[J]. Heat and Mass Transfer, 2006, 42(5):370-377. [55] HASSELMAN D P H, JOHNSON L F, SYED R, et al. Heat conduction characteristics of a carbon-fiber-reinforced Lithia-alumina-silicate glass-ceramic[J]. Journal of Materials Science, 1987, 22(2):701-709. [56] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6):508-515. [57] MARKWORTH A J. The transverse thermal conductivity of a unidirectional fiber composite with fiber-matrix deboning:a calculation based on effective medium theory[J]. Journal of Materials Science Letters, 1993, 12(19):1487-1489. [58] ZOU M, YU B, ZHANG D. An analytical solution for transverse thermal conductivities of unidirectional fiber composites with thermal barrier[J]. Journal of Physics D:Applied Physics, 2002, 35(15):1867-1874. [59] LU T J, HUTCHINSON J W, RODEL D J. Effect of matrix cracking on the overall thermal conductivity of fiber-reinforced composites[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences, 1995, 351(1697):595-610. [60] YOUNGBLOOD G E, SENOR D J, JONES R H. Optimizing the transverse thermal conductivity of 2D-SiCf/SiC composites I model[J]. Journal of Nuclear Materials, 2002, 307-311(Part 2):1112-1119. [61] BENVENISTE Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents:Nondilute case[J]. Journal of Applied Physics, 1987, 61(8):1-5. [62] KLETT J W, ERVIN V J, EDIE D D. Finite element model of heat transfer in carbon/carbon composites[J]. Composites Science and Technology, 1999, 59(4):593-607. [63] ISLAM M D R, PRAMILA A. Thermal conductivity of fiber reinforced composites by the FEM[J]. Journal of Composite Materials, 1999, 33(18):1699-1715. [64] MADSEN B, LILHOLT H. Physical and mechanical properties of unidirectional plant fiber composites-an evaluation of the influence of porosity[J]. Composites Science and Technology, 2003, 63(9):1265-1272. [65] SOMMERS A, WANG Q, HAN X. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems:A review[J]. Applied Thermal Engineering, 2010, 30(11-12):1277-1291. [66] MOLINA J M, PRIETO R, NARCISO J, et al. The effect of porosity on the thermal conductivity of Al-12wt% Si/SiC composites[J]. Scripta Materialia, 2009, 60(7):582-585. [67] HASSELMAN D P H. Effect of cracks on thermal conductivity[J]. Journal of Composite Materials, 1978, 12(4):403-407. [68] WHITTAKER A J, TAYLOR R, TAWIL H. Thermal transport properties of carbon-carbon fiber composites I thermal diffusivity measurements[J]. Proceedings Ma-thematically and Physical Sciences, 1990, 430(1878):167-181. [69] WHITTAKER A J, TAYLOR R, TAWIL H. Thermal transport properties of carbon-carbon fiber composites II. Microstructural characterization[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1990, 430(1878):183-197. [70] WHITTAKER A J, TAYLOR R. Thermal transport properties of carbon-carbon fiber composites III. Mathematical model[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1990, 430(1878):199-211. [71] AL-ASTRABADI F, OCALLAGHAN P, PROBERT S. Thermal contact resistance dependence on surface topography[C]//14th Thermophysics Conference. Reston:AIAA, 1979. [72] KRACH A, ADVANI S G. Influence of void shape void volume and matrix anisotropy on effective thermal conductivity of a three-phase composite[J]. Journal of Composite Materials,1996, 30(8):933-946. [73] YAN D, WEN J, XU G. A Monte-Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC[J]. Applied Thermal Engineering, 2015, 94:827-835. [74] MANSILLA D T. Analysis and simulation of transverse random fracture of long fiber reinforced composites[D]. Girona:University De Girona, 2005:1-65. [75] GANAPATHY D, SINGH K, PHELAN P E. An effective unit cell approach to compute the thermal conductivity of composites with cylindrical particles[J]. Journal of Heat Transfer, 2005, 127(6):553-559. [76] GRAHAM S, MCDOWELL D L. Numerical analysis of the transverse thermal conductivity of composites with imperfect interfaces[J]. Journal of Heat Transfer, 2003, 125(3):389-393. [77] JIANG H, MAO J, TU Z, et al. Thermal conductivity prediction method of fiber-reinforced material with microstructure identification[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(4):1-11. [78] VISHNEVSKII G E, SHLENSKII O F. Effect of the properties of the components and the geometric characteristics of the structure on the thermal conductivity coefficients of glass-reinforced plastics[J]. Mechanics of Composite Materials, 1968, 4(1):11-15. [79] ISMAIL M I, AMMAR A S A, EL-OKEILY M. Heat transfer through textile fabrics:mathematical model[J]. Applied Mathematical modeling, 1988, 12(4):434-440. [80] NING Q G, CHOU T W. A closed-form solution of the transverse effective thermal conductivity of woven fabric composites[J]. Journal of Composite Materials, 1995, 29(17):2280-2294. [81] DASGUPTA A, AGARWAL R K, BHANDARKAR S M. Three-dimensional model of woven-fabric composites for effective thermo-mechanical and thermal properties[J]. Composites Science and Technology, 1996, 56(3):209-223. [82] ZHU F, LI K. Determining effective thermal conductivity of fabrics by using fractal method[J]. International Journal of Thermophysics, 2010, 31(3):612-619. [83] YOSHIHIRO Y, HIROAKI Y, HAJIME M. Effective thermal conductivity of plain weave fabric and its composite material made from high strength fibers[J]. Journal of Textile Engineering, 2008, 54(4):111-119. [84] SIDDIQUI M O R, SUN D. Finite element analysis of thermal conductivity and thermal resistance behavior of woven fabric[J]. Computational Materials Science, 2015, 75, 45-51. [85] VOREL J, MICHAL Š. Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method[J]. Structural Engineering and Mechanics, 2009, 33(4):429-446. [86] FAROOQI J K, SHEIKH M A. Finite element model of thermal transport in ceramic matrix composites[J]. Computational Materials Science, 2006, 37(3):361-373. [87] PUGLIA P D, SHEIKH M A, HAYHURST D R. Classification and quantification of initial porosity in a CMC laminate[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(2):223-230. [88] LIU Y Q, QU Z G, GUO J, et al. Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns[J]. International Journal of Heat and Mass Transfer, 2019, 140:410-419. [89] DONG K, LIU K, PAN L J, et al. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures, 2016, 154:319-333. [90] XU Y J, REN S X, ZHANG W H. Thermal conductivities of plain woven C/SiC composite:micromechanical model considering PyC interphase thermal conductance and manufacture induced voids[J]. Composite Structures, 2018, 193:212-223. [91] MEI H. Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites[J]. Composites Science and Technology, 2008, 68(15-16):3285-3292. [92] GAO X G, HAN X,SONG Y D. X-ray computed tomography based microstructure reconstruction and numerical estimation of thermal conductivity of 2.5D ceramic matrix composite[J]. Ceramics International, 2017, 43(13):9790-9797. [93] CHEN M M, ZHANG D X, GONG J H. Predictions of trans-verse thermal conductivities for plain weave ceramic matrix composites under in-plane loading[J]. Composite Structures, 2018, 48(5):828-842. [94] MOHAJERJASBI S. Structure and properties of three-dimensional braided composites including axial yarns[J]. AIAA Journal, 1996, 34(1):209-211. [95] 程伟, 赵寿根, 刘振国, 等. 三维四向编织复合材料等效热特性数值分析和试验研究[J]. 航空学报, 2002, 23(2):102-105. CHENG W, ZHAO S G, LIU Z G, et al. Thermal property of 3-d braided fiber composites experimental and numerical results[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):102-105(in Chinese). [96] 杨振宇, 卢子兴, 刘振国, 等. 三维四向编织复合材料力学性能的有限元分析[J]. 复合材料学报, 2005, 22(5):155-161. YANG Z Y, LU Z X, LIU Z G, et al. Finite element analysis of the mechanical properties of 3-d braided composites[J]. Acta Materiae Compositae Sinica, 2005, 22(5):159-165(in Chinese). [97] GOU J J, FANG W Z, DAI Y J, et al. Multi-size unit cells to predict effective thermal conductivities of 3D four-directional braided composites[J]. Composite Structures, 2017, 163:152-167. [98] 李典森, 陈利, 李嘉禄. 三维五向编织复合材料的细观结构分析[J]. 天津工业大学学报, 2003, 22(6):7-11. LI D S, CHEN L, LI J L. Microstructure analysis of 3-dimensional 5-directional braided composites[J]. Journal of Tianjin Polytechnic University, 2003, 22(6):7-11(in Chinese). [99] 李典森, 卢子兴, 刘振国, 等. 三维五向编织复合材料导热性能的有限元分析[J]. 航空动力学报, 2008, 23(8):1455-1460. LI D S, LU Z X, LIU Z G, et al. Finite element analysis of thermal conductivity of three dimensional and five directional braided composites[J]. Journal of Aerospace Power, 2008, 23(8):1455-1460(in Chinese). [100] 江华. 陶瓷基涡轮叶片热分析模型研究[D]. 南京:南京航空航天大学, 2015:57-69. JIANG H. Thermal analysis methods for ceramic matrix composite turbine vanes[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:57-69(in Chinese). [101] 卢子兴, 王成禹, 夏彪. 三维全五向编织复合材料弹性性能及热物理性能的有限元分析[J]. 复合材料学报, 2013, 30(3):160-167. LU Z X, WANG C Y, XIA B. Finite element analysis of elastic property and thermos-physical property of three-dimensional and full five-directional braided composites[J]. Acta Materiae Compositae Sinica, 2013, 30(3):160-167(in Chinese). [102] LEE S E, YOO J S, KANG J H, et al. Prediction of the thermal conductivities of four-axial non-woven composites[J]. Composite Structures, 2009, 89(2):262-269. [103] JIANG L, XU G, CHENG S, et al. Predicting the thermal conductivity and temperature distribution in 3D braided composites[J]. Composite Structures, 2014, 108(1):578-583. [104] DONG K, ZHANG J, JIN L, et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures, 2016, 143:9-22. [105] FANG W Z, CHEN L, GOU J J, et al. Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016; 92:120-130. [106] HUANG X, ZHOU Q, LIU J, et al. 3D stochastic modeling simulation and analysis of effective thermal conductivity in fibrous media[J]. Powder Technology, 2017, 320:397-404. [107] BHATIA T, JARMON D, SHI J, et al. CMC combustor liner demonstration in a small helicopter engine[C]//Proceedings of ASME Turbo Expo:Power for Land, Sea and Air. Glasgow:ASME, 2010:509-513. [108] HALD H, ORTELT M, FISCHER I, et al. Effusion cooled CMC rocket combustion chamber[C]//AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2005. [109] LEBEL L, TURENNE S, BOUKHILI R. An experimental apparatus and procedure for the simulation of thermal stresses in gas turbine combustion chamber panels made of ceramic matrix composites[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(9):1-11. [110] BREWER D, OJARD G, GIBLER M. Ceramic matrix composite combustor liner rig test[C]//ASME Turbo Expo 2000:Power for Land, Sea, and Air. Munich:ASME, 2000. [111] KIMMEL J B, PRICE J R, MORE K L, et al. The evaluation of CFCC liners after field testing in a gas turbine IV[C]//ASME Turbo Expo 2003:Power for Land, Sea, and Air. Atlanta:ASME, 2000. [112] MORE K L, WALKER L R, WANG Y L, et al. Microstructural and mechanical characterization of a hybrid oxide CMC combustor liner after 25,000 hour engine test[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. Orlando:ASME, 2009. [113] ROODE V M, BHATTACHARYA A K. Durability of oxide/oxide ceramic matrix composites in gas turbine combustors[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5):1-9. [114] BOUQUET C, LACOMBE A, HAUBER B, et al. Ceramic matrix composites cooled panel development for advanced propulsion systems[C]//45th AIAA/ASME/ASCE/AH S/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2004. [115] PENG L, HE G Q, LIU P J. Experimental and numerical investigation of active cooling ceramic matrix composite for ramjet propulsion system[C]//45th AIAA/AS ME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2009. [116] REIMER T, KUHN M, ALI G, GULHAN A, et al. Transpiration cooling tests of porous CMC in hypersonic flow[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011. [117] MICHAEL J, VANN H, ANDY N, et al. Ceramic matrix composite materials for engine exhaust systems on next generation vertical lift vehicles[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140:1-14. [118] 刘宁夫, 蒋军亮, 丛琳华, 等. 陶瓷基复合材料超高温冷热冲击试验[J]. 科学技术与工程, 2019, 19(28):401-405. LIU N F, JIANG J L, CONG L H, et al. Ultra-temperature cooling and thermal shock test for ceramic matrix composite[J]. Science Technology and Engineering, 2019, 19(28):401-405(in Chinese). [119] WANG X W, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2018, 209, 523-534. [120] WEI K, HE R J, CHENG X M, et al. Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel[J]. Applied Thermal Engineering, 2015, 81:10-17. [121] 赵宏丽. 碳/碳编织复合材料温度场有限元分析[D]. 济南:山东轻工业学院, 2012:1-68. ZHAO H L. Finite element analysis of the temperature field for carbon/carbon braided composites[D]. Ji'nan:Shandong Institute of light industry, 2012:1-68(in Chinese). [122] 陈龙淼. 复合材料身管热学性能研究[D]. 南京:南京理工大学, 2005:20-56. CHEN L M. Study on thermal properties of composite barrel[D]. Nanjing:Nanjing University of technology, 2005:20-56(in Chinese). [123] NITA K, OKITA Y, NAKAMATA C. Experimental and numerical study on application of a CMC nozzle for high temperature gas turbine[C]//36th International conference on advanced ceramics and composites. Daytona Beach:John Wiley & Sons, 2013:315-324. [124] 屠泽灿. 陶瓷基复合材料导热机理及其在气冷涡轮叶片热分析中的应用研究[D]. 南京:南京航空航天大学, 2018:49-160. TU Z C. Investigation of CMC's Thermal conductive on mechanism and its application in thermal analysis for turbine vane[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:49-160(in Chinese). [125] TU Z C, MAO J K, JIANG H, et al. Numerical method for the thermal analysis of a ceramic matrix composite turbine vane considering the spatial distribution of the anisotropic thermal conductivity[J]. Applied Thermal Engineering, 2017, 127:436-452. [126] LIU X, SHEN X, GONG L, et al. Multi-scale thermos-dynamic analysis method for 2D SiC/SiC composite turbine guide vanes[J]. Chinese Journal of Aeronautics, 2018, 31(1):117-125. [127] SHEN X L, QIAO Y F, DONG S J, et al. Thermal load test method and numerical calculation for ceramic matrix composite turbine guide vane[J]. Applied Composite Materials, 2019, 26:553-573. [128] TU Z C, MAO J K, HAN X S, et al. Prediction model for the anisotropic thermal conductivity of a 2.5D braided ceramic matrix composite with thin wall structure[J]. Applied Sciences, 2019, 9(5):875-891. [129] PROKEIN D, BOEHRK H, WOLFERSDORF J V. Analysis of anisotropy effects for transpiration cooled CMC leading edges using OpenFOAM[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2015. [130] 赵晓. 考虑气膜孔与编织结构干涉的复合材料气膜冷却研究[D]. 南京:南京航空航天大学, 2017:9-120. ZHAO X. Investigation on film cooling of braided composites considering film hole and braided structure interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:9-120(in Chinese). [131] SMIALEK J L, ROBINSON R C, OPILA E J, et al. SiC and Si3 N4 recession due to SiO2 scale volatility under combustor conditions[J]. Advanced Composite Materials, 1999, 8(1):33-45. [132] FERRARI L, BARBATO M, ESSER B, et al. Sandwich structured ceramic matrix composites with periodic cellular ceramic cores:an active cooled thermal protection for space vehicles[J]. Composite Structures, 2016, 154:61-68. [133] ZHANG D X, HAYHURST D R. Influence of applied in-plane strain on transverse thermal conductivity of 0°/90° and plain weave ceramic matrix composites[J]. International Journal of Solids and Structures, 2011, 48(5):828-842. [134] 屠泽灿, 毛军逵, 赵晓. 各向异性复合材料平板气膜冷却试验研究[J]. 工程热物理学报, 2018, 39(4):852-859. TU Z C, MAO J K, ZHAO X. Experimental study of film cooling over a composite flat plate with anisotropic thermal conductivity[J]. Journal of Engineering Thermophysics, 2018, 39(4):852-859(in Chinese). [135] 侯亚东, 单勇, 李江宁, 等. 各向异性复合材料平板气膜冷却特性实验和数值研究[J]. 航空动力学报, 2017, 32(10):2384-2393. HOU Y D, SHAN Y, LI J N, et al. Experimental and numerical studies on the film cooling characteristics of anisotropic composite plates[J]. Journal of Aeronautical Power, 2017, 32(10):2384-2393(in Chinese). [136] ZHONG F Q, BROWN G L. Experimental study of multi-hole cooling for integrally woven, ceramic matrix composite walls for gas turbine applications[J]. International Journal of Heat and Mass Transfer, 2009, 52(3-4):971-985. [137] ZHONG F Q, BROWN G. Experimental and numerical studies of multi-hole cooled ceramic matrix composite liners[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [138] DAHMEN W, MUELLER S, ROM M, et al. Numerical boundary layer investigations of transpiration cooled turbulent channel flow[J]. International Journal of Heat and Mass Transfer, 2015, 86:90-100. [139] KOENIG V, ROM M, MUELLER S, et al. Numerical and experimental investigation of transpiration cooling with carbon/carbon characteristic outflow distributions[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(2):449-461. [140] CAO L Y, LIU Y S, ZHANG Y H, et al. Enhancing thermal conductivity of C/SiC composites containing heat transfer channels[J]. Journal of the European Ceramic Society, 2020, 40(10):3520-3527. [141] ZHOU Q, YIN X W, Ye F, et al. Multiscale designed SiCf/Si3N4 composite for low and high frequency cooperative electromagnetic absorption[J]. Journal of the American Ceramic Society, 2018, 101(12):5552-5563. [142] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics:A review[J]. Journal of the European Ceramic Society, 2018, 39:661-687. [143] MEI H, ZHAO X, ZHOU S X, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2019, 372:940-945. [144] 杨金山, 黄凯, 游潇, 等. 3D打印三维石墨烯及其高性能陶瓷基复合材料[J]. 中国材料进展, 2018, 37(8):590-596. YANG J S, HUANG K, YOU X. Three-dimensional graphene by 3 d printing and related advanced ceramic matrix composites[J]. Materials China, 2018, 37(8):590-596(in Chinese). [145] ABDI F, GODINES C, MORSCHER G N, et al. Foreign object damage and fatigue after impact simulations on flat and curved Hi Nicalon and Hi Nicalon type S (MI SiC)specimens at room and 1 200℃ using building block approach[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul:ASME, 2016. [146] PRESBY M J, MANSOUR R, MANIGANDAN K,et al. Characterization and simulation of foreign object damage in curved and flat SiC/SiC ceramic matrix composites[J]. Ceramics International, 2018, 45(2):1-9. [147] CHEN Y, GÉLÉBART L, CHATEAU C, et al. 3D detection and quantitative characterization of cracks in a ceramic matrix composite tube using X-ray computed tomography[J]. Experimental Mechanics, 2020, 60:409-424. |
[1] | 黄红岩, 苏力军, 雷朝帅, 李健, 张恩爽, 李文静, 杨洁颖, 赵英民, 裴雨辰, 张昊. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 23716-023716. |
[2] | 代吉祥, 沙建军, 王首豪, 王永昌. 纤维表面状态对C/C-SiC复合材料微观组织和相成分的影响[J]. 航空学报, 2015, 36(5): 1704-1712. |
[3] | 许英杰;张卫红;杨军刚;汪海滨. 平纹机织多元多层碳化硅陶瓷基复合材料的等效弹性模量预测[J]. 航空学报, 2008, 29(5): 1350-1355. |
[4] | 葛启录;雷廷权;周玉. Al_2O_3-ZrO_2-SiC_W陶瓷复合材料的显微结构和力学性能[J]. 航空学报, 1992, 13(7): 381-387. |
[5] | 周施真;王俊奎. 纤维增强陶瓷复合材料中桥接裂纹问题的等效杂质模型分析[J]. 航空学报, 1991, 12(7): 416-419. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 848
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学