[1] 薛帅杰, 刘红军, 洪流, 等. 厚液膜敞口型离心喷嘴动力学特性试验[J]. 航空学报, 2018, 39(12):122534. XUE S J, LIU H J, HONG L, et al. Experimental on dynamic characteristics of an open-end swirl injector with thick liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122534(in Chinese). [2] NADA T R, HASHEM A A. Geometrical characterization and performance optimization of monopropellant thruster injector[J]. The Egyptian Journal of Remote Sensing and Space Science, 2012, 15(2):161-169. [3] JEDELSKY J, JICHA M. Energy considerations in spraying process of a spill-return pressure-swirl atomizer[J]. Applied Energy, 2014, 132:485-495. [4] LIU J, ZHANG X Q, LI Q L, et al. Effect of geometric parameters on the spray cone angle in the pressure swirl injector[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(2):342-353. [5] XUE J, JOG M A, JENG S M, et al. Effect of geometric parameters on simplex atomizer performance[J]. AIAA Journal, 2004, 42(12):2408-2415. [6] 薛帅杰, 刘红军, 陈鹏飞, 等. 注气离心喷嘴喷注过程稳定性试验[J]. 航空学报, 2019, 40(7):122697. XUE S J, LIU H J, CHEN P F, et al. Test on spray stability of swirl injector with gas injection[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122697(in Chinese). [7] 刘娟. 旋转锥形液膜破碎过程实验与仿真研究[D]. 长沙:国防科学技术大学, 2012:79-115. LIU J. Experimental and numerical simulation of the breakup process of swirling conical liquid sheet[D]. Changsha:National University of Defense Technology, 2012:79-115(in Chinese). [8] KANG Z T, LI Q L, ZHANG J Q, et al. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors[J]. Acta Astronautica, 2018, 146:24-32. [9] 岳明, 杨茂林. 锥形液膜空间稳定性分析[J]. 航空动力学报, 2003, 18(6):794-798. YUE M, YANG M L. On the spatial instability of a conical sheet[J]. Journal of Aerospace Power, 2003, 18(6):794-798(in Chinese). [10] FU Q F, YANG L J, QU Y Y, et al. Linear stability analysis of a conical liquid sheet[J]. Journal of Propulsion and Power, 2010, 26(5):955-968. [11] HOSSEINALIPOUR S M, GHORBANI R, KARIMAEI H. Effect of liquid sheet and gas streams characteristics on the instability of a hollow cone spray using an improved linear instability analysis[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(1):24-33. [12] REDDY R, BANERJEE R. Direct simulations of liquid sheet breakup in planar gas blast atomization[J]. Atomization and Sprays, 2017, 27(2):95-116. [13] 王凯, 杨国华, 李鹏飞,等. 基于Gerris的离心式喷嘴锥形液膜破碎过程数值模拟[J]. 推进技术, 2018, 39(5):1041-1050. WANG K, YANG G H, LI P F, et al. Numerical simulation on conical liquid sheet breakup process of pressure swirl injector based on gerris[J]. Journal of Propulsion Technology, 2018, 39(5):1041-1050(in Chinese). [14] 康忠涛. 气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D]. 长沙:国防科学技术大学, 2016:81-113. KANG Z T. The unsteady atomization mechanism and combustion characteristics of gas-liquid swirl coaxial injector[D]. Changsha:National University of Defense Technology, 2016:81-113(in Chinese). [15] 康忠涛, 李清廉, 张新桥,等. 气液同轴双离心式喷嘴喷雾特性[J]. 国防科技大学学报, 2014, 36(5):50-57. KANG Z T, LI Q L, ZHANG X Q, et al. Spray characteristic of gas-liquid double swirl coaxial injector[J]. Journal of National University of Defense Technology, 2014, 36(5):50-57(in Chinese). [16] 刘赵淼, 郑会龙, 林家源,等. 双路离心式喷嘴液膜形态的实验研究[J]. 北京工业大学学报, 2020, 46(5):431-439. LIU Z M, ZHENG H L, LIN J Y, et al. Experimental study on liquid film morphology of the dual-orifice swirl nozzle[J]. Journal of Beijing University of Technology, 2020, 46(5):431-439(in Chinese). [17] POPINET S. Gerris:A tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2):572-600. [18] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16):5838-5866. [19] BELL J B, COLELLA P, GLAZ H M. A second-order projection method for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 1989, 85(2):257-283. [20] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese). [21] CHEN X D, MA D J, YANG V, et al. High-fidelity simulations of impinging jet atomization[J]. Atomization and Sprays, 2013, 23(12):1079-1101. [22] FRASER R P. Liquid fuel atomization[J]. Symposium (International) on Combustion, 1957, 6(1):687-701. [23] DOMBROWSKI N, HASSON D. The flow characteristics of swirl (centrifugal) spray pressure nozzles with low viscosity liquids[J]. AIChE Journal, 2010, 15(4):604-611. [24] LI X G, TANKIN R S. On the temporal instability of a two-dimensional viscous liquid sheet[J]. Journal of Fluid Mechanics, 1991, 226:425-443. [25] IBRAHIM E A. Spatial instability of a viscous liquid sheet[J]. Journal of Propulsion and Power, 1995, 11(1):146-152. [26] LIAO Y, JENG S M, JOG M A, et al. Instability of an annular liquid sheet surrounded by swirling airstreams[J]. AIAA Journal, 2000, 38(3):453-460. [27] IBRAHIM A. Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer[D]. Cincinnati:University of Cincinnati, 2006:144-197. |