[1] KLEINSTREUER C, ZHANG Z. Airflow and particle transport in the human respiratory system[J]. Annual Review of Fluid Mechanics, 2010, 42(1):301-334. [2] 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报, 2020, 41(3):123363. HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123363(in Chinese). [3] ZHU J Z, QI H Y, WANG J S. Nanoparticle dispersion and coagulation in a turbulent round jet[J]. International Journal of Multiphase Flow, 2013, 54:22-30. [4] WENGELER R, NIRSCHL H. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates[J]. Journal of Colloid and Interface Science, 2007, 306(2):262-273. [5] LIN J Z, CHAN T L, LIU S, et al. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(1):45-54. [6] KIM D S, HONG S B, KIM Y J, et al. Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence[J]. Journal of Aerosol Science, 2006, 37(12):1781-1787. [7] ABRAHAMSON J. Collision rates of small particles in a vigorously turbulent fluid[J]. Chemical Engineering Science, 1975, 30(11):1371-1379. [8] TSANTILIS S, PRATSINIS S E, HAAS V. Simulation of synthesis of palladium nanoparticles in a jet aerosol flow condenser[J]. Journal of Aerosol Science, 1999, 30(6):785-803. [9] YU M Z, LIN J Z, ZHANG K, et al. Two-way coupling model for fractal-like agglomerate-laden multiphase flow[C]//Proceedings of ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. New York:ASME, 2010:399-405. [10] RIGOPOULOS S. PDF method for population balance in turbulent reactive flow[J]. Chemical Engineering Science, 2007, 62(23):6865-6878. [11] EATON J K, FESSLER J R. Preferential concentration of particles by turbulence[J]. International Journal of Multiphase Flow, 1994, 20:169-209. [12] READE W C, COLLINS L R. Effect of preferential concentration on turbulent collision rates[J]. Physics of Fluids, 2000, 12(10):2530-2540. [13] WOOD A M, HWANG W, EATON J K. Preferential concentration of particles in homogeneous and isotropic turbulence[J]. International Journal of Multiphase Flow, 2005, 31(10-11):1220-1230. [14] LIU S Y, CHAN T L. A coupled CFD-Monte Carlo method for simulating complex aerosol dynamics in turbulent flows[J]. Aerosol Science and Technology, 2017, 51(3):269-281. [15] ZHANG R Y, KHALIZOV A, WANG L, et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3):1957-2011. [16] MERIKANTO J, DUPLISSY J, MÄÄTTÄNEN A, et al. Effect of ions on sulfuric acid-water binary particle formation:1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(4):1736-1751. [17] ABDELSAMIE A, KRUIS F E, WIGGERS H, et al. Nanoparticle formation and behavior in turbulent spray flames investigated by DNS[J]. Flow, Turbulence and Combustion, 2020, 105(2):497-516. [18] GARRICK S C. Growth mechanisms of nanostructured titania in turbulent reacting flows[J]. Journal of Nanotechnology, 2015, 2015:642014. [19] CROWE C T. Multiphase flow handbook[M]. Boca Raton:CRC Press, 2005. [20] THANH N T K, MACLEAN N, MAHIDDINE S. Mechanisms of nucleation and growth of nanoparticles in solution[J]. Chemical Reviews, 2014, 114(15):7610-7630. [21] 王甜蜜, 唐桂华. 银纳米颗粒消光特性的理论及实验研究[J]. 工程热物理学报, 2019, 40(3):639-643. WANG T M, TANG G H. Theoretical and experimental study on the extinction properties of silver nanoparticles[J]. Journal of Engineering Thermophysics, 2019, 40(3):639-643(in Chinese). [22] 王鑫, 赵小虎, 王明珠, 等. 纳米颗粒增强环氧树脂抗原子氧剥蚀性能机理研究[J]. 航空学报, 2007, 28(1):207-212. WANG X, ZHAO X H, WANG M Z, et al. Investigation of atomic oxygen resistance improving mechanism for epoxy/silica nanocomposites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):207-212(in Chinese). [23] 徐孟嘉,刘博生,毕晓阳,等. 激光加工双级结构对Al/CFRPEEK接头组织及性能的影响[J/OL]. 航空学报, (2020-10-20)[2021-07-06]. https://kns.cnki.net/kcms/detail/11.1929.V.20201019.1449.012.html. XU M J, LIU B S, BI X Y, et al. Effect of laser textured dual-scale structure on microstructure and mechanical property of Al/CFRPEEK joint[J/OL]. Acta Aeronautica et Astronautica Sinica,(2020-10-20)[2021-07-06]. https://kns.cnki.net/kcms/detail/11.1929.V.20201019.1449.012.html (in Chinese). [24] CHEN S, LOU Z, CHEN D, et al. Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device[J]. Science China Materials, 2016, 59(3):173-181. [25] 阚伟民, 章先涛, 江浩庆, 等. 悬浮纳米颗粒对液体燃料着火点的影响[J]. 热科学与技术, 2015, 14(1):63-67. KAN W M, ZHANG X T, JIANG H Q, et al. Effect of suspended nano-sized particle on liquid fuel ignition[J]. Journal of Thermal Science and Technology, 2015, 14(1):63-67(in Chinese). [26] SEAR R P. Nucleation:Theory and applications to protein solutions and colloidal suspensions[J]. Journal of Physics:Condensed Matter, 2007, 19(3):033101. [27] BECKER R, DÖRING W. Kinetische behandlung der keimbildung in übersättigten d ämpfen[J]. Annalen Der Physik, 1935, 416(8):719-752. [28] FRENKEL J. Statistical theory of condensation phenomena[J]. The Journal of Chemical Physics, 1939, 7(3):200-201. [29] SCHENTER G K, KATHMANN S M, GARRETT B C. Dynamical nucleation theory:A new molecular approach to vapor-liquid nucleation[J]. Physical Review Letters, 1999, 82(17):3484-3487. [30] LAMER V K, DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols[J]. Journal of the American Chemical Society, 1950, 72(11):4847-4854. [31] WATZKY M A, FINKE R G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant:Slow, continuous nucleation and fast autocatalytic surface growth[J]. Journal of the American Chemical Society, 1997, 119(43):10382-10400. [32] VEHKAMÄKI H, KULMALA M, LEHTINEN K E J, et al. Modelling binary homogeneous nucleation of water-sulfuric acid vapours:Parameterisation for high temperature emissions[J]. Environmental Science & Technology, 2003, 37(15):3392-3398. [33] YIN Z Q, LIN J Z, ZHOU K, et al. Numerical simulation of the formation of pollutant nanoparticles in the exhaust twin-jet plume of a moving car[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2007, 8(4):535-543. [34] YIN Z Q, LIN J Z. Numerical simulation of the formation of nanoparticles in an impinging twin-jet[J]. Journal of Hydrodynamics, Ser B, 2007, 19(5):533-541. [35] YIN Z Q, LIN J Z, ZHOU K. Research on nucleation and coagulation of nanoparticles in parallel twin jets[J]. Applied Mathematics and Mechanics, 2008, 29(2):153-162. [36] YU M Z, LIN J Z, CHAN T. Numerical simulation of nanoparticle synthesis in diffusion flame reactor[J]. Powder Technology, 2008, 181(1):9-20. [37] YU M Z, LIN J Z, CHAN T. Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor[J]. Chemical Engineering Science, 2008, 63(9):2317-2329. [38] YU M Z, LIN J Z, CHAN T. Numerical simulation for nucleated vehicle exhaust particulate matters via the TEMOM/LES method[J]. International Journal of Modern Physics C, 2009, 20(3):399-421. [39] YU M Z, LIN J Z. Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model[J]. International Journal of Heat and Mass Transfer, 2010, 53(4):635-644. [40] LIN J Z, LIU Y H. Nanoparticle nucleation and coagulation in a mixing layer[J]. Acta Mechanica Sinica, 2010, 26(4):521-529. [41] CHAN T, ZHOU K, LIN J Z, et al. Vehicular exhaust gas-to-nanoparticle conversion and concentration distribution in the vehicle wake region[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(8):581-594. [42] CHAN T, LIU S Y, YUE Y. Nanoparticle formation and growth in turbulent flows using the bimodal TEMOM[J]. Powder Technology, 2018, 323:507-517. [43] MEYER C J, DEGLON D A. Particle collision modeling-A review[J]. Minerals Engineering, 2011, 24(8):719-730. [44] PARK S H, KRUIS F E, LEE K W, et al. Evolution of particle size distributions due to turbulent and Brownian coagulation[J]. Aerosol Science and Technology, 2002, 36(4):419-432. [45] ZAICHIK L I, SOLOV'EV A L. Collision and coagulation nuclei under conditions of Brownian and turbulent motion of aerosol particles[J]. High Temperature, 2002, 40(3):422-427. [46] WANG Y M, LIN J Z. The oblique collision efficiency of nanoparticles at different angles in Brownian coagulation[J]. Computers & Mathematics with Applications, 2011, 61(8):1917-1922. [47] WANG Y M, LIN J Z. Collision efficiency of two nanoparticles with different diameters in Brownian coagulation[J]. Applied Mathematics and Mechanics, 2011, 32(8):1019-1028. [48] FENG Y, LIN J Z. The collision efficiency of spherical dioctyl phthalate aerosol particles in the Brownian coagulation[J]. Chinese Physics B, 2008, 17(12):4547-4553. [49] LIN J Z, WANG Y M. Effects of inter-particle interactions and hydrodynamics on the Brownian coagulation rate of polydisperse nanoparticles[J]. Modern Physics Letters B, 2012, 26(3):1150010. [50] WANG Y M, LIN J Z, FENG Y. The central oblique collision efficiency of spherical nanoparticles in the Brownian coagulation[J]. Modern Physics Letters B, 2010, 24(14):1523-1531. [51] MVLLER H. Zur allgemeinen theorie ser raschen koagulation[J]. Kolloidchemische Beihefte, 1928, 27:223-250. [52] YU M Z, LIN J Z. Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime[J]. Journal of Aerosol Science, 2009, 40(6):549-562. [53] CAMP T R, STEIN P C. Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 85:219-237. [54] SAFFMAN P G, TURNER J S. On the collision of drops in turbulent clouds[J]. Journal of Fluid Mechanics, 1956, 1(1):16-30. [55] FLESCH J C, SPICER P T, PRATSINIS S E. Laminar and turbulent shear-induced flocculation of fractal aggregates[J]. AIChE Journal, 1999, 45(5):1114-1124. [56] 冯鹏, 盛虎, 周虎, 等. 亚微米颗粒物湍流团聚数值模拟研究[J]. 洁净煤技术, 2020, 26(5):181-187. FENG P, SHENG H, ZHOU H, et al. Numerical simulation on the characteristics of submicron particle turbulence agglomeration[J]. Clean Coal Technology, 2020, 26(5):181-187(in Chinese). [57] YU Z K, BU S, ZHANG L, et al. Turbulent coagulation of micron and submicron particles in swirling flow[J]. Separation and Purification Technology, 2020, 248:117098. [58] YU M Z, LIN J Z, JIN H H, et al. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion[J]. Journal of Nanoparticle Research, 2011, 13(5):2007-2020. [59] YU M Z, LIN J Z. Taylor series expansion scheme applied for solving population balance equation[J]. Reviews in Chemical Engineering, 2018, 34(4):561-594. [60] YU M Z, LIN J Z. Solution of the agglomerate Brownian coagulation using Taylor-expansion moment method[J]. Journal of Colloid and Interface Science, 2009, 336(1):142-149. [61] YU M Z, LIN J Z, CHAN T. A new moment method for solving the coagulation equation for particles in Brownian motion[J]. Aerosol Science and Technology, 2008, 42(9):705-713. [62] LIN J Z, CHEN Z L. A modified TEMOM model for Brownian coagulation of nanoparticles based on the asymptotic solution of the sectional method[J]. Science China Technological Sciences, 2013, 56(12):3081-3092. [63] CHEN Z L, LIN J Z, YU M Z. A direct expansion method of moments for Brownian coagulation[J]. Physica Scripta, 2014, 89(12):125204. [64] CHEN Z L, LIN J Z, YU M Z. Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime[J]. Journal of Aerosol Science, 2014, 67:28-37. [65] YU M Z, LIN J Z. Hybrid method of moments with interpolation closure-Taylor-series expansion method of moments scheme for solving the Smoluchowski coagulation equation[J]. Applied Mathematical Modelling, 2017, 52:94-106. [66] GARRICK S C. Effects of turbulent fluctuations on nanoparticle coagulation in shear flows[J]. Aerosol Science and Technology, 2011, 45(10):1272-1285. [67] DAS S, GARRICK S C. The effects of turbulence on nanoparticle growth in turbulent reacting jets[J]. Physics of Fluids, 2010, 22(10):103303. [68] LIN J Z,LIU S, CHAN T. Nanoparticle migration in a fully developed turbulent pipe flow considering the particle coagulation[J]. Chinese Journal of Chemical Engineering, 2012, 20(4):679-685. [69] LIN J Z, CHEN Z L. Effect of coagulation and diffusion on nanoparticle distribution in a fully developed turbulent boundary layer[J]. Chinese Physics Letters, 2012, 29(5):054701. [70] LIN J Z, PAN X J, YIN Z Q, et al. Solution of general dynamic equation for nanoparticles in turbulent flow considering fluctuating coagulation[J]. Applied Mathematics and Mechanics, 2016, 37(10):1275-1288. [71] YANG H L, LIN J Z, CHAN T. Effect of fluctuating aerosol concentration on the aerosol distributions in a turbulent jet[J]. Aerosol and Air Quality Research, 2020, 20(7):1629-1639. [72] SHI R F, LIN J Z, YANG H L, et al. Distribution of non-spherical nanoparticles in turbulent flow of ventilation chamber considering fluctuating particle number density[J]. Applied Mathematics and Mechanics, 2021, 42(3):317-330. [73] BELUT E. A new experimental dataset to validate CFD models of airborne nanoparticles agglomeration[C]//9th International Conference on Multiphase Flow, 2016. [74] GAN F J, LIN J Z, YU M Z. Particle size distribution in a planar jet flow under-going shear-induced coagulation and breakage[J]. Journal of Hydrodynamics, Ser B, 2010, 22(4):445-455. [75] BARTHELMES G, PRATSINIS S E, BUGGISCH H. Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation[J]. Chemical Engineering Science, 2003, 58(13):2893-2902. [76] MARCHISIO D L, DENNIS VIGIL R, FOX R O. Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems[J]. Chemical Engineering Science, 2003, 58(15):3337-3351. [77] MARCHISIO D L, DENNIS VIGIL R, FOX R O. Quadrature method of moments for aggregation-breakage processes[J]. Journal of Colloid and Interface Science, 2003, 258(2):322-334. [78] XIE L, RIELLY C D, ÖZCAN-TAŞKIN G. Break-up of nanoparticle agglomerates by hydrodynamically limited processes[J]. Journal of Dispersion Science and Technology, 2008, 29(4):573-579. [79] PANDYA J D, SPIELMAN L A. Floc breakage in agitated suspensions:Theory and data processing strategy[J]. Journal of Colloid and Interface Science, 1982, 90(2):517-531. [80] HILL P J, NG K M. New discretization procedure for the breakage equation[J]. AIChE Journal, 1995, 41(5):1204-1216. [81] SERRA T, CASAMITJANA X. Effect of the shear and volume fraction on the aggregation and breakup of particles[J]. AIChE Journal, 1998, 44(8):1724-1730. [82] YUAN F Y, TU C X, YU J F, et al. High-pressure dispersion of nanoparticle agglomerates through a continuous aerosol disperser[J]. Applied Nanoscience, 2019, 9(8):1857-1868. [83] BAŁDYGA J, ORCIUCH W, MAKOWSKI Ł, et al. Break up of nano-particle clusters in high-shear devices[J]. Chemical Engineering and Processing:Process Intensification, 2007, 46(9):851-861. [84] LAI A C K, NAZAROFF W W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces[J]. Journal of Aerosol Science, 2000, 31(4):463-476. [85] CHEN F Z, LAI A C K. An Eulerian model for particle deposition under electrostatic and turbulent conditions[J]. Journal of Aerosol Science, 2004, 35(1):47-62. [86] CHEN F Z, YU S C M, LAI A C K. Modeling particle distribution and deposition in indoor environments with a new drift-flux model[J]. Atmospheric Environment, 2006, 40(2):357-367. [87] 付峥嵘. 气溶胶颗粒在通风空调风管系统中沉降规律的研究[D]. 长沙:湖南大学, 2007. FU Z R. Research on aerosol particle deposition characteristics in ventilation duct systems[D]. Changsha:Hunan University, 2007(in Chinese). [88] ZAICHIK L I, DROBYSHEVSKY N I, FILIPPOV A S, et al. A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3):154-162. [89] TALEBIZADEH P, RAHIMZADEH H, AHMADI G, et al. Study of nano-particle deposition in tubular pipes under turbulent condition[C]//10th Australasian Heat & Mass Transfer Conference, 2016. [90] GUICHARD R, BELUT E, NIMBERT N, et al. Evaluation of a moments-based formulation for the transport and deposition of small inertia aerosols[J]. The Journal of Computational Multiphase Flows, 2014, 6(4):407-418. [91] HOLMBERG S, LI Y G. Modelling of the indoor environment-Particle dispersion and deposition[J]. Indoor Air, 1998, 8(2):113-122. [92] GAO N P, NIU J L. Modeling particle dispersion and deposition in indoor environments[J]. Atmospheric Environment, 2007, 41(18):3862-3876. [93] MEHEL A, SAGOT B, TANIōRE A, et al. On the mutual effect of the turbulent dispersion model and thermophoresis on nanoparticle deposition[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13(6):417-425. [94] LIN J Z, YIN Z Q, LIN P F, et al. Distribution and penetration efficiency of nanoparticles between 8-550 nm in pipe bends under laminar and turbulent flow conditions[J]. International Journal of Heat and Mass Transfer, 2015, 85:61-70. [95] LIN J Z, SHI R F, YUAN F Y, et al. Distribution and penetration efficiency of cylindrical nanoparticles in turbulent flows through a curved tube[J]. Aerosol Science and Technology, 2020, 54(11):1255-1269. [96] OUNIS H, AHMADI G, MCLAUGHLIN J B. Brownian particle deposition in a directly simulated turbulent channel flow[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(6):1427-1432. [97] WU Z, YOUNG J B. Deposition of small particles from turbulent flows[C]//Proceedings of ASME 2003 Heat Transfer Summer Conference. New York:ASME, 2008:731-741. [98] MINA E M, GHORBANIASL G, LACOR C. Study of nanoparticles deposition in a human upper airway model using a dynamic turbulent Schmidt number[J]. Ain Shams Engineering Journal, 2018, 9(4):2389-2398. |