航空学报 > 2020, Vol. 41 Issue (4): 123596-123596   doi: 10.7527/S1000-6893.2019.23596

声爆近场空间压力风洞测量技术

刘中臣1,2, 钱战森1,2, 冷岩1,2, 高亮杰1,2   

  1. 1. 航空工业空气动力研究院, 沈阳 110034;
    2. 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034
  • 收稿日期:2019-10-21 修回日期:2019-12-13 出版日期:2020-04-15 发布日期:2019-12-12
  • 通讯作者: 钱战森 E-mail:qianzs@avicari.com.cn
  • 基金资助:
    国家自然科学基金(11672280)

Wind tunnel measurement techniques for sonic boom near-field pressure

LIU Zhongchen1,2, QIAN Zhansen1,2, LENG Yan1,2, GAO Liangjie1,2   

  1. 1. AVIC Aerodynamics Research Institute, Shenyang 110034, China;
    2. Aviation Key Laboratory of Science and Technology on High Speed and High Reynolds Number Aerodynamic Force Research, Shenyang 110034, China
  • Received:2019-10-21 Revised:2019-12-13 Online:2020-04-15 Published:2019-12-12
  • Supported by:
    National Natural Science Foundation of China (11672280)

摘要: 针对暂冲式超声速风洞中的声爆试验,发展了近场空间压力精确测量技术,以航空工业空气动力研究院的FL-60风洞为例,开展了技术验证。FL-60风洞是一座典型的亚跨超三声速下吹式风洞,其试验马赫数范围为0.3~4.2,试验段尺寸为1.2 m×1.2 m,单车次试验时间通常为数十秒。根据暂冲式风洞试验时间短、耗气量大等特点,设计了无反射测压轨以代替传统的静压探针,大幅提高了声爆近场空间压力的测量效率。通过CFD技术对无反射测压轨的流动特性、模型安装位置以及风洞试验段中的波系进行了分析,验证了测压轨设计方案的可行性。采用Seeb-ALR低声爆标模和自行设计的带喷流的旋成体模型进行了验证性试验,采用参考车次方法和空间平均技术获得了高质量的数据,试验测量结果与CFD计算结果一致性较好,验证了声爆近场空间压力测量系统设计的合理性。

关键词: 声爆, 近场, 空间压力测量, 无反射测压轨, 空间平均

Abstract: For the sonic boom test in the intermittent supersonic wind tunnels, the accurate measurement technology for sonic boom near-field pressure is developed. Technical verification is carried out in FL-60 wind tunnel of AVIC Aerodynamics Research Institute. FL-60 wind tunnel is a trisonic blow down wind tunnel with Mach number range from 0.3 to 4.2, and the test section size is 1.2 m×1.2 m. The test time of each run is usually tens of seconds. According to the characteristics of intermittent wind tunnels with short run time and large air consumption, a non-reflective pressure measurement rail is designed, which significantly improves the efficiency of the measurement of sonic boom near-field pressure. The CFD technology is utilized to analyze the flow characteristics of the non-reflection rail, model installation position and structure of shock wave system in the wind tunnel test section, and the feasibility of the non-reflection rail is verified. The Seeb-ALR low boom model and the self-designed axisymmetric model with jet are utilized to carry out the validation test. The high-quality measurement data are obtained by using the reference run method and spatial averaging technology as auxiliary method. The test results are in good agreement with the CFD calculation, which verifies the rationality of the sonic boom near-field pressure measurement system.

Key words: sonic boom, near-field, spatial pressure measurement, non-reflection rail, spatial averaging

中图分类号: