[1] DUNAND A, CARREAU J L, ROGER F. Liquid jet breakup and atomization by annular swirling gas jet[J]. Atomization & Sprays, 2005, 15(2):223-247. [2] SHIM Y S, CHOI G M, KIM D J. Numerical and experimental study on hollow-cone fuel spray of high pressure swirl injector under high ambient pressure condition[J]. Journal of Mechanical Science & Technology, 2008, 22(2):320-329. [3] JUNG K, LIM B, KHIL T, et al. Breakup characteristics of laminar and turbulent liquid sheets formed by impinging jets in high pressure environments[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, VA:AIAA、2013. [4] KAMPEN J V, CIEZKI H K, TIEDT T, et al. Some aspects of the atomization behavior of Newtonian and of shear-thinning gelled non-Newtonian fluids with an impinging jet injector[C]//Spray Workshop, 2006. [5] LEE J G, FAKHI S, YETTER R. Atomization and spray characteristics of gelled-propellant simulants formed by two impinging jets[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2009. [6] 杜青, 杨子明, 白富强, 等. 高环境压力下幂律流体射流液滴粒度特性试验[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(7):689-695. DU Q, YANG Z M, BAI F Q, et al. Experiment on droplets size distribution of the cylindrical power-law liquid jet under high ambient pressure[J]. Journal of Tianjin University (Science and Technology), 2017, 50(7):689-695(in Chinese). [7] 成晓北, 鞠洪玲. 高压喷射雾化液滴的二次破碎机理[J]. 华中科技大学学报(自然科学版), 2008, 36(10):125-128. CHENG X B, JU H L. Secondary breakup mechanisms of a jet atomized liquid drop[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2008, 36(10):125-128(in Chinese). [8] 曹伟. 幂律流体双股射流碰撞雾化的试验研究[D]. 哈尔滨:哈尔滨工业大学, 2016. CAO W. Experimental study on the atomization characteristics of impinging jets of power-law fluids[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese). [9] 夏振炎, 李珍妮, 李建军, 等. 撞击式射流破碎特性的实验研究[J]. 天津大学学报, 2016, 49(7):770-776. XIA Z Y, LI Z N, LI J J, et al. An experimental study on breakup characteristics of impinging jets[J]. Journal of Tianjin University, 2016, 49(7):770-776(in Chinese). [10] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11):1734-1740. DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11):1734-1740(in Chinese). [11] BAI B F, ZHANG H B, LIU L, et al. Experimental study on turbulent mixing of spray droplets in crossflow[J]. Experimental Thermal and Fluid Science, 2009, 33(6):1012-1020. [12] XIAO H, SHI Y, XU Z, et al. Atomization characteristics of gelled hypergolic propellant simulants[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(4):743-747. [13] HUO Y P, WANG J F, ZUO Z W, et al. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization[J]. Physics of Fluids, 2015, 27(11):114105. [14] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39:201-225. [15] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141:112-152. [16] SCHLOTTKE J, WEIGAND B. Direct numerical simulation of evaporating droplets[J]. Journal of Computational Physics, 2008, 227:5215-5237. [17] GOMMA H, KUMAR S, HUBER C, et al. Numerical comparison of 3D jet breakup using a compression scheme and an interface reconstruction based VOF-code[C]//24th ILASS Europe, 2011. [18] MATSUHISA S, BIRD R B. Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluids[J]. AIChE Journal, 1965, 11:588-595. [19] 杨卫东, 张蒙正, 凝胶推进剂流变及雾化特性研究与进展[J]. 火箭推进, 2005, 31(5):37-42. YANG W D, ZHANG M Z. Research and development of rheological and atomization characteristics of gelled propellants[J]. Journal of Rocket Propulsion, 2005, 31(5):37-42(in Chinese). [20] MOTZIGEMBA M, ROTH N, BOTHE D, et al. The effect of non-Newtonian flow behavior on binary droplet collisions:VOF-simulation and experimental analysis[C]//18th ILASS-Europe, 2002. [21] FOCKE C, BOTHE D. Computational analysis of binary collisions of shear thinning droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166:799-810. [22] SCHRÖEDER J, LEDERER M L, GAUKEL V, et al. Effect of atomizer geometry and rheological properties on effervescent atomization of aqueous polyvinylphrrolidone solution[C]//24th ILASS Europe, 2011. [23] ZHU C X, ERTL M, WEIGAND B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence[J]. Physics of Fluids, 2013, 25:083102. [24] 朱呈祥, 尤延铖. 横向气流中非牛顿液体射流直接数值模拟[J]. 航空学报, 2016, 37(9):2659-2668. ZHU C X, YOU Y C. Direct numerical simulation of a non-Newtonian liquid jet in crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2659-2668(in Chinese). [25] 朱呈祥, 陈荣钱, 尤延铖, 低韦伯数非牛顿射流撞击破碎直接数值模拟[J]. 航空学报, 2017, 38(8):120764. ZHU C X, CHEN R Q, YOU Y C. Direct numerical simulation of impinging jet breakup with non-Newtonian properties at low Weber number[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8):120764(in Chinese). [26] 朱呈祥, 吴猛, 陈荣钱, 等. 剪切稀化非牛顿射流撞击液膜破碎直接数值模拟[J]. 航空学报, 2018, 39(5):121982. ZHU C X, WU M, CHEN R Q, et al. Direct numerical simulation of sheet breakup formed y two impinging jets with non-Newtonian shear thinning properties[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121982(in Chinese). [27] BATCHELOR G K. The theory of homogeneous turbulence[M]. Cambridge:Cambridge University Press, 1953:133-168. [28] BREMOND N, CLANET C, VILLERMAUX E. Atomization of undulating liquid sheets[J]. Journal of Fluid Mechanics, 2007, 585:421-456. [29] SHINJO J, UMEMURA A. Simulation of liquid jet primary breakup:Dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36(7):513-532. |