航空学报 > 2016, Vol. 37 Issue (3): 916-927   doi: 10.7527/S1000-6893.2015.0163

双框架MSCMG框架伺服系统的动力学解耦及扰动补偿

崔培玲1,2, 杨珊1,2, 李海涛1,2   

  1. 1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083;
    2. 北京航空航天大学 惯性技术国家级重点实验室, 北京 100083
  • 收稿日期:2015-04-09 修回日期:2015-05-29 出版日期:2016-03-15 发布日期:2015-06-07
  • 通讯作者: 崔培玲,Tel.:010-82339273,E-mail:peilingcui@buaa.edu.cn E-mail:peilingcui@buaa.edu.cn
  • 作者简介:崔培玲,女,博士,副教授,硕士生导师。主要研究方向:磁悬浮控制力矩陀螺控制。Tel:010-82339273,E-mail:peilingcui@buaa.edu.cn;杨珊,男,硕士研究生。主要研究方向:磁悬浮控制力矩陀螺控制。E-mail:yangshanbuaa@163.com;李海涛,男,博士,讲师,硕士生导师。主要研究方向:磁悬浮控制力矩陀螺控制。E-mail:greatlht@163.com
  • 基金资助:

    国家自然科学基金(61203112)

Dynamic decoupling control and disturbance compensation of gimbal servo system of double gimbal MSCMG

CUI Peiling1,2, YANG Shan1,2, LI Haitao1,2   

  1. 1. School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China;
    2. Science and Technology on Inertial Laboratory, Beijing Unicersity, Beijing 100083, China
  • Received:2015-04-09 Revised:2015-05-29 Online:2016-03-15 Published:2015-06-07
  • Supported by:

    National Natural Science Foundation of China(61203112)

摘要:

双框架磁悬浮控制力矩陀螺(MSCMG)框架伺服系统是一个多变量、强耦合、非线性的复杂系统,针对耦合力矩对框架系统速率伺服性能的影响,以及框架系统动力学解耦之后存在残余耦合、卫星运动引起的牵连力矩和非线性摩擦的问题,提出了微分几何法与扩张状态观测器(ESO)相结合的高精度控制方法,在线性化解耦的基础上对残余耦合、牵连力矩及非线性摩擦进行观测补偿以提高框架伺服系统解耦及速率跟踪性能。仿真结果表明、由耦合力矩引起的内、外框架速率波动最大值分别从0.18(°)/s和0.12(°)/s减小到5×10-3(°)/s和4×10-3(°)/s,内、外框架正弦角速度跟踪误差分别从0.18(°)/s和0.19(°)/s减小到0.005(°)/s和0.004(°)/s。所提出的方法实现了框架伺服系统的动力学解耦以及非线性摩擦和牵连力矩的补偿,提高了框架系统的解耦性能和速率伺服精度。

关键词: 扰动补偿, 动力学解耦, 框架伺服系统, 微分几何法, 扩张状态观测器

Abstract:

The gimbal servo system of the double gimbal magnetically suspended control moment gyroscope(MSCMG) is a complex system with characteristics of multivariable, nonlinearity and strong coupling. In order to solve the problem that the speed-servo performance of gimbal system will be influenced by coupling moment as well as the residual coupling, convected torque caused by satellite and nonlinear friction after decoupling, the state feedback linearization decoupling method based on differential geometry combined with the extended state observer(ESO) is proposed to eliminate the influence of the coupling moment on the servo control performance of the gimbal system. Meanwhile, the convected torque caused by satellite and nonlinear friction is compensated based on linearization decoupling. The simulation results indicate that the velocity maximum fluctuation of inner and outer gimbal system caused by coupling moment respectively decreases from 0.18(°)/s and 0.12(°)/s to 5×10-3(°)/s and 4×10-3(°)/s; the sinusoidal velocity error of inner and outer gimbal system decreases from 0.18(°)/s and 0.19(°)/s to 0.005(°)/s and 0.004(°)/s. The results verify that the dynamic decoupling has been realized, and the nonlinear friction and convected torque caused by satellite have been compensated effectively. The decoupling performance and speed-servo precision of gimbal servo system are improved.

Key words: disturbance compensation, dynamic decoupling, gimbal servo system, differential geometry method, extended state observer

中图分类号: