[1] BHAT S P, TIWARI P K. Controllability of spacecraft attitude using control moment gyroscopes[J]. IEEE Transactions on Automatic Control, 2009, 54(3):585-590.
[2] HAN B C, ZHENG S Q, WANG X, et al. Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application[J]. IEEE Transactions on Magnetics, 2012, 48(6):1959-1966.
[3] REN Y, FANG J C. High-stability and fast-response twisting motion control for the magnetically suspended rotor system in a control moment gyro[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1625-1634.
[4] 李海涛, 房建成. 基于扩张状态观测器的DGMSCMG框架伺服系统振动抑制方法[J]. 航空学报, 2010, 31(6):1213-1219. LI H T, FANG J C. Study on system vibration suppression method based on ESO used in gimbal servo system of DGMSCMG[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1213-1219(in Chinese).
[5] FANG J C, LI H T, HAN B C. Torque ripple reduction in BLDC torque motor with nonideal back EMF[J]. IEEE Transactions on Power Electronics, 2012, 27(11):4630-4637.
[6] 魏彤, 房建成. 磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J]. 宇航学报, 2005, 26(1):19-23. WEI T, FANG J C. Moving-gimbal effect and angular rate feedforward control in magnetically suspended rotor system of CMG[J]. Journal of Astronautics, 2005, 26(1):19-23(in Chinese).
[7] 魏彤, 房建成. 双框架磁悬浮控制力矩陀螺动框架效应补偿方法[J]. 机械工程学报, 2010, 46(2):159-165. WEI T, FANG J C. Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control[J]. Journal of Mechanical Engineering, 2010, 46(2):159-165(in Chinese).
[8] FANG J C, REN Y. Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1133-1144.
[9] TUAN N N, STEVEN S, HUNG T N. Neural network based diagonal decoupling control of powered wheelchair systems[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(2):371-378.
[10] LI J, LI S H, CHEN X S, et al. RBFNDOB-based neural network inverse control for non-minimum phase MIMO system with disturbances[J]. ISA Transactions in Disturbance Estimation and Mitigation, 2014, 53(4):983-993.
[11] 程启明, 杜许峰, 郭瑞青, 等. 基于最小二乘支持向量机的多变量逆系统控制方法及应用[J]. 中国电机工程学报, 2008, 28(35):96-101. CHENG Q M, DU X F, GUO R Q, et al. Decoupling compound control method based on least squares support vector machines multivariable inverse system and its application[J]. Proceedings of the CSEE, 2008, 28(35):96-101(in Chinese).
[12] WU M, YAN J, SHE J H, et al. Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7):2782-2792.
[13] FANG J C, REN Y. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9):4331-4342.
[14] 陈晓岑, 周东华, 陈茂银. 基于逆系统方法的双框架MSCMG框架伺服系统解耦控制研究[J]. 自动化学报, 2013, 39(5):502-508. CHEN X C, ZHOU D H, CHEN M Y. Decoupling control of the gimbal servo-system of the DGMSCMG based on the dynamic inverse system method[J]. Acta Automatica Sinica, 2013, 39(5):502-508(in Chinese).
[15] REN Y, FANG J C. High precision and strong-robustness control for an MSCMG based on modal separation and rotation motion decoupling strategy[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1539-1551.
[16] 于波, 陈云相, 郭秀中. 惯性技术[M]. 北京:北京航空航天大学出版社, 1994:1-39. YU B, CHEN Y X, GUO X Z. Inertial technology[M]. Beijing:Beihang University Press, 1994:1-39(in Chinese).
[17] 杨倩, 崔培玲, 韩邦成. 卫星机动时DGMSCMG磁悬浮转子干扰补偿控制[J]. 宇航学报, 2012, 33(6):720-727. YANG Q, CUI P L, HAN B C. Disturbance compensation control of magnetically suspended rotor of DGMSCMG during spacecraft attitude maneuver[J]. Journal of Astronautics, 2012, 33(6):720-727(in Chinese).
[18] 韩邦成, 杨莲慧, 李海涛. 动基座下DGCMG框架伺服系统干扰补偿控制[J]. 振动、测试与诊断, 2014, 34(4):686-692. HAN B C, YANG L H, LI H T. Disturbance compensation control of gimbal servo system for DGCMG used in spacecraft[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(4):686-692(in Chinese).
[19] 张景瑞. 灵敏卫星快速倾斜机动的MSCMG参数和力矩估算[J]. 清华大学学报:自然科学版, 2007, 47(11):2040-2043. ZHANG J R. Estimation of MSCMG parameters and torques for rapid slewing maneuver of agile spacecraft[J]. Journal of Tsinghua University:Science and Technology, 2007, 47(11):2040-2043(in Chinese).
[20] 吴忠, 张激扬. 控制力矩陀螺框架伺服系统动力学建模与控制[J].应用基础与工程科学学报, 2007, 15(1):130-136. WU Z, ZHANG J Y. Dynamics and control of gimbal servo systems for control moment gyroscopes[J]. Journal of Basic Science and Engineering, 2007, 15(1):130-136(in Chinese).
[21] 姜长生, 吴庆宪, 费树岷. 现代非线性系统鲁棒控制基础[M]. 哈尔滨:哈尔滨工业大学出版社, 2008:30-46. JIANG C S, WU Q X, FEI S M. Robust control basis of modern nonlinear systems[M]. Harbin:Harbin Institute of Technology Press, 2008:30-46(in Chinese).
[22] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008:150-260. HAN J Q. Active disturbance rejection control technique-The technique for estimating and compensation the uncertainties[M]. Beijing:National Defence Industry Press, 2008:150-260(in Chinese).
[23] SU Y X, ZHENG C H, DUAN B Y. Automatic disturbances rejection controller for precise motion control of permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2005, 52(3):814-823.
[24] ZHAO H X, CHEN S L, LI M. A sufficient condition for the stability of the third-order extended state observer[C]//Proceedings of the 32nd Chinese Control Conference, 2013:1526-1531.
[25] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社, 2005:50-59. LIU J K. MATLAB simulation for sliding mode control[M]. Beijing:Tsinghua University Press, 2005:50-59(in Chinese). |