[1] Hughes J D H. The carbon fiber/epoxy interface—a review[J]. Composites Science and Technology, 1991, 41(1): 13-45. [2] Raghavendran V K, Drzal L T, Askeland P. Effect of surface oxygen content and roughness on interfacial adhesion in carbon fber-polycarbonate composites[J]. Journal of Adhesion Science and Technology, 2002, 161(10): 1283-1306. [3] Pamula E, Rouxhet P G. Bulk and surface chemical functionalities of type Ⅲ PAN-based carbon fibres[J]. Carbon, 2003, 41(10): 1905-1915. [4] Nishikawa M, Okabe T, Takeda N. Determination of interface properties from experiments on the fragmentation process in single-fiber composites[J]. Materials Science and Engineering, 2008, 480(1-2): 549-557. [5] Drzal L T, Rich M J, Lioyd P F. Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment[J]. The Journal of Adhesion, 1983, 16(1): 1-30. [6] Tomonoh S, Sawanobori T. Fiber-matrix adhesion mechanism of pitch-based carbon fiber composites[J]. Composite Interfaces, 1993, 1(2): 113-125. [7] Kim K Y, Ye L. Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/matrix adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(4): 477-487. [8] Hojo M, Matsushita Y, Tanaka M, et al. Interfacial fatigue crack propagation in microscopic model composite using bifiber shear specimens[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(2): 239-246. [9] Xu Z W, Li J L, Wu X Q, et al. Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 301-307. [10] Guo H, Huang Y D, Liu L, et al. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites[J]. Materials and Design, 2010, 31(3): 1186-1190. [11] Drzal L T, Sugiura N, Hook D. The role of chemical bonding and surface topography in adhesion between carbon fibers and epoxy matrices[J]. Composite Interfaces, 1996, 4(5): 337-354. [12] Cheng T H, Zhang J, Yumitor S, et al. Sizing resin structure and interphase formation in carbon fibre composites[J]. Composites, 1994, 25(7): 661-670. [13] Jones F R. A review of interphase formation and design in fibre-reinforced composites[J]. Journal of Adhesion Science and Technology, 2010, 24(1): 171-202. [14] Zhang R L, Huang Y D, Su D, et al, Influence of sizing molecular weight on the properties of carbon fibers and its composites[J]. Materials and Design, 2012, 34: 649-654. [15] Cao X, Wen Y F, Zhang S C, et al. A heat-resistant emulsifying sizing agent for carbon fibers[J]. New Carbon Materials, 2006, 21(4): 337-342. [16] Upadhyaya D, Tsakiropoulos P. Evaluation of the effect of sizing levels on transverse flexural and shear strengths of carbon/epoxy composites[J]. Journal of Materials Processing Technology, 1995, 54(1): 17-20. [17] Mader E, Gao S L, Plonka R. Static and dynamic properties of single and multi-fiber/epoxy composites modified by sizings[J]. Composites Science and Technology, 2007, 67(6): 1105-1115. [18] Dai Z S, Zhang B Y, Shi F H, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(20): 8457-8461. [19] Yumitor S, Wang D, Jones F R. The role of sizing resins in carbon fibre-reinforced polyethersulfone (PES)[J]. Composites, 1994, 25(7): 698-705. [20] Bradley R H, Ling X, Sutherland I. An investigation of carbon fiber surface chemistry and reactivity based on XPS and surface free energy[J]. Carbon, 1993, 31(7): 1115-1120. [21] Dilsiz N, Wightman J P. Surface analysis of unsized and sized carbon fibers[J]. Carbon, 1999, 37(7): 1105-1114. [22] Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4): 785-796. |