[1] Schuster D H, Liu D D, Huttsell L J. Computational aeroelasticity: success, progress, challenge[J]. Journal of Aircraft, 2003, 40(5): 843-856.[2] Heathcote J. Flexible flapping airfoil propulsion at zero free-stream velocity[J]. AIAA Journal, 2004, 42(11): 2196-2204.[3] Zhou X, Li S X, Sun S L, et al. Advances in the research on unstructured mesh deformation[J]. Advances in Mechanics, 2011, 41(5): 547-561. (in Chinese) 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展, 2011, 41(5): 547-561.[4] Sudhakar Y, Vengadesan S. Flight force production by flapping insect wings in inclined stroke plane kinematics[J]. Computers & Fluids, 2010(39): 683-695.[5] Shyy W, Aono H, Chimakurthi S K. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327.[6] Gaitonde A L, Fiddes S P. A moving mesh system for the calculation of unsteady flows, AIAA-1993-0641[R]. Reston: AIAA, 1993.[7] Banita J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J].AIAA Journal, 1990, 28(8): 1381-1388.[8] Tezduyar T E. Stabilized finite element formulations for incompressible flow computations[J]. Advances in Applied Mechanics, 1992, 28(1): 1-44.[9] Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405-423.[10] Boer A, Schoot M S, Faculty H B. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007, 85(11): 784-795.[11] Chen Y, Cao S L, Liang K H, et al. Research on dynamic closing process of hollow-jet valve[J]. Fluid Machinery, 2009, 37(12): 9-14. (in Chinese) 陈炎, 曹树良, 梁开洪, 等. 射流放水阀动态关闭过程研究[J]. 流体机械, 2009, 37(12): 9-14.[12] Yang Z, Mavriplis D J. Unstructured dynamic meshes with higher order time integration schemes for the unsteady Navier-Stokes equations, AIAA-2005-1222[R]. Reston: AIAA, 2005.[13] McDaniel D R, Morton S A. Efficient mesh deformation for computational stability and control analyses on unstructured viscous meshes, AIAA-2009-1363[R]. Reston: AIAA, 2009.[14] Yang G W. Recent progress on computational aeroelasticity[J]. Advances in Mechanics, 2009, 39(4): 406-420. (in Chinese) 杨国伟. 计算气动弹性若干研究进展[J]. 力学进展, 2009, 39(4): 406-420.[15] Zhang L P, Deng X G, Zhang H X. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4): 424-447. (in Chinese) 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4): 424-447.[16] Blom F J. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6): 647-668.[17] Guo Z, Liu J, Qu Z H. Dynamic unstructured grid method with applications to 3D unsteady flows involving boundaries[J]. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(2): 140-146. (in Chinese) 郭正, 刘君, 瞿章华. 非结构动网格在三维可动边界问题中的应用[J]. 力学学报, 2003, 35(2): 140-146.[18] Farhat C, Degand C, Koobus B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(4): 231-245.[19] Huo S H, Wang F S, Yue Z F. Spring analogy method for generating of 2D unstructured dynamic meshes[J]. Journal of Vibration and Shock, 2011, 30(10): 177-182. (in Chinese) 霍世慧, 王富生, 岳珠峰. 弹簧近似法在二维非结构动网格生成技术中的应用[J]. 振动与冲击, 2011, 30(10): 177-182.[20] Mitsuhiro M. Unstructured dynamic mesh for large movement and deformation, AIAA-2002-0122[R]. Reston: AIAA, 2002.[21] Zeng D H, Ethier C R. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains[J]. Finite Elements in Analysis and Design, 2005, 41(3): 1118-1139.[22] Bottasso C L, Detomi D, Serra R. The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(8): 4244-4264.[23] Markou G A, Mouroutis Z S, Charmpis D C, et al. The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4): 747-765.[24] Mouroutis Z S, Markou G A, Papadrakakis M, et al. An efficient mesh updating technique for fluid structure interaction problems[J]. International Journal of Computational Methods, 2007, 4(2): 249-263.[25] Wu Q, Zhong Y C, Yu S Z, et al. An iterative method for unstructured dynamic-grid using springs based on LU-SGS[J]. Chinese Journal of Computational Physics, 2009, 26(6): 806-812. (in Chinese) 吴晴, 钟易成, 余少志, 等. 基于LU-SGS 的非结构弹簧网格迭代算法[J]. 计算物理, 2009, 26(6): 806-812.[26] Chu J. Research of the generation of dynamic unstructured meshes[D]. Nanjing: School of Energy and Power Engineering, Nanjing University of Science and Technology, 2006.(in Chinese) 褚江. 非结构动网格生成方法研究[D]. 南京: 南京理工大学能源与动力工程学院, 2006.[27] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial domain/space-time procedure: I. the concept and the preliminary tests[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.[28] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial domain/space-time procedure: Ⅱ. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 353-371.[29] Tezduyar T E, Behr M, Mittal S, et al. A computation of unsteady incompressible flows with the finite element methods-space-time formulations, iterative strategies and massively parallel implementations[J]. ASME, 1992, 143: 7-24.[30] Stein K, Tezduyar T E, Benney R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics, 2003, 70(1): 58-63.[31] Smith R W, Wright J A. A classical elasticity-based mesh update method for finite volume flow solvers, AIAA-2009-0771[R]. Reston: AIAA, 2009.[32] Huo S H, Wang F S, Yan W Z, et al. Layered elastic solid method for the generation of unstructured dynamic mesh[J]. Finite Elements in Analysis and Design, 2010, 46(10): 949-955.[33] Nielsen E J, Anderson W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6): 1155-1163.[34] Truong A H, Oldfield C A, Zingg D W. Mesh movement for a discrete-adjoint Newton-Krylov algorithm for aerodynamic optimization[J]. AIAA Journal, 2008, 46(7): 1695-1704.[35] Chen Y, Cao S L, Liang K H, et al. A new dynamic grids based on temperature analogy and its application in vibration engineering with fluid-solid interaction[J]. Journal of Vibration and Shock, 2010, 29(4): 1-5. (in Chinese) 陈炎, 曹树良, 梁开洪, 等. 基于温度体模型的动网格生成方法及在流固耦合振动中的应用[J]. 振动与冲击, 2010, 29(4): 1-5.[36] Chen Y, Cao S H, Zhu B S, et al. Vibration of thin cambered blade based on temperature analogy[J]. Journal of Mechanical Engineering, 2010, 46(10): 170-175. (in Chinese) 陈炎, 曹树良, 祝宝山, 等. 基于温度体动网格方法的微弯薄翼振动问题[J]. 机械工程学报, 2010, 46(10): 170-175.[37] Chen Y, Cao S L, Liang K H, et al. Parameter control in temperature analogy method[J]. Chinese Journal of Computational Physics, 2010, 27(3): 396-406. (in Chinese) 陈炎, 曹树良, 梁开洪, 等. 温度体动网格模型中控制参数的研究[J]. 计算物理, 2010, 27(3): 396-406.[38] Chen Y, Zhang Q Z, Cao S L, et al. A new method of dynamic grid generation based on reference temperature distribution[J]. Transactions of Beijing Institute of Technology, 2012, 32(9): 900-904. (in Chinese) 陈炎, 张勤昭, 曹树良, 等. 基准温度分布动网格生成方法的研究及应用[J]. 北京理工大学学报, 2012, 32(9): 900-904.[39] Gaitonde A L. A dual-time method for the solution of the 2D unsteady Navier-stokes equations on structuredmoving meshes, AIAA-1995-1877-CR[R]. Reston: AIAA, 1995.[40] Gaitonde A L, Fiddes S P. Three-dimensional moving mesh method for the calculation of unsteady transonic flows[J]. Aeronautical Journal, 1995, 99(4): 150-160.[41] Byun C, Guruswamy G P. A parallel multi-block moving grid method for aeroelastic applications on full aircraft, AIAA-1998-4782[R]. Reston: AIAA, 1998.[42] Dong L L. The application of transfinite interpolation to numerical simulation of control surface oscillating deflection[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 207-209. (in Chinese) 董琳琳. 超限插值法在舵面振荡偏转数值模拟中的应用[J]. 弹箭与制导学报, 2011, 31(4): 207-209.[43] Yuan X X, Zhang H X, Xie Y F, et al. The development of an unsteady numerical methods and its application on dynamic vehicle flows[J]. Acta Aerodynamica Sinica, 2004, 22(4): 432-438. (in Chinese) 袁先旭, 张涵信, 谢昱飞, 等. 非定常数值模拟方法的发展及其在动态绕流中的应用[J]. 空气动力学学报, 2004, 22(4): 432-438.[44] Liu X Q, Li Q, Chai J H, et al. A new dynamic grid algrithm and its application[J]. Acta Areonautica et Astronautica Sinica, 2008, 29(4): 817-822. (in Chinese) 刘学强, 李青, 柴建忠, 等. 一种新的动网格方法及其应用[J]. 航空学报, 2008, 29(4): 817-822.[45] Zhang L P, Chang X H, Duan X P, et al. A block LU-SGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations[J]. Computers & Fluids, 2008, 38(2): 290-308.[46] Lv C. Study of dynamic grid deformationical algorithm and its application[D]. Changsha: Graduate School, National University of Defense Technology, 2010. (in Chinese) 吕超. 变形网格计算方法研究及其应用[D]. 长沙:国防科技大学研究生院, 2010.[47] Xiao T H. A numerical method for unsteady low Reynolds number flows and application to micro air vehicles[D]. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) 肖天航. 低雷诺数非定常流场的数值方法及其在微型飞行器上的应用[D]. 南京: 南京航空航天大学航空宇航学院, 2009.[48] Xiao T H, Ang H S, Tong C. A new dynamic mesh generation method for large movements of flapping-wings with complex geometries[J]. Acta Areonautica et Astronautica Sinica, 2008, 29(1): 405-423. (in Chinese) 肖天航, 昂海松, 仝超. 大幅运动复杂构形扑翼动态网格生成的一种新方法[J]. 航空学报, 2008, 29(1): 405-423.[49] Lin Y Z, Chen B, Xu X. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics, 2012, 29(2): 191-197. (in Chinese) 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2): 191-197.[50] Jakobsson S, Amoignon O. Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization[J]. Computers & Fluids, 2007, 36 (11): 1119-1136.[51] Botsch M, Kobbelt L. Real-time shape editing using radial basis functions[J]. Computer Graphics Forum, 2005, 24(3): 611-621.[52] Rendall T C S, Allen C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10): 1519-1559.[53] Rendall T C S, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(5): 6231-6249.[54] Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(1): 2810-2820.[55] Rendall T C S, Allen C B. Improved radial basis function fluid-structure coupling via efficient localized implementation[J]. International Journal for Numerical Methods in Engineering, 2009, 78(10): 1188-1208.[56] Sheng C H, Allen C B. Efficient mesh deformation using radial basis functions on unstructured meshes[J]. AIAA Journal, 2013, 51(3): 707-720.[57] Wang G, Lei B Q, Ye Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5): 783-788. (in Chinese) 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5): 783-788.[58] Wang G, Mian H H, Ye Z Y. An improved point selection method for hybrid-unstructured mesh deformation using radial basis functions, AIAA-2013-3076[R]. Reston: AIAA, 2013.[59] Xie L, Xu M, An X M, et al. Research of mesh deforming method based on radial basis functions and nonlinear aeroelastic simulation[J]. Acat Aeronautica et Astronautica Sinica, 2013, 34(7): 1501-1511. (in Chinese) 谢亮, 徐敏, 安效民, 等. 基于径向基函数的网格变形及非线性气动弹性时域仿真研究[J]. 航空学报, 2013, 34(7): 1501-1511.[60] Tsai H M, Wong A S F. Unsteady flow calculations with a parallel multiblock moving mesh algorithm[J]. AIAA Journal, 2001, 39(6): 1021-1020.[61] Zhang B, Han J L. Spring-TFI hybrid dynamic mesh method with rotation correction[J]. Acta Areonautica et Astronautica Sinica, 2011, 32(10): 1815-1823. (in Chinese) 张兵, 韩景龙. 带旋转修正的弹簧-TFI混合动网格方法[J]. 航空学报, 2011, 32(10): 1815-1823.[62] Huang L k, Gao Z Z, Zuo Y T. A fast and robust parallelizable moving mesh algorithm for multi-block structured grids[J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 363-368. (in Chinese) 黄礼铿, 高正红, 左英桃. 一种快速稳健的并行多块结构动网格方法[J]. 计算力学学报, 2012, 29(3): 363-638.[63] Zhou X, Li S X, Chen B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Areonautica et Astronautica Sinica, 2010, 31(7): 1389-1395. (in Chinese) 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7): 1389-1395.[64] Lin T J, Guan Z Q. Fast dynamic mesh moving based on background grid morphing[J]. Chinese Journal of Computational Mechanics, 2012, 29(1): 105-110. (in Chinese) 林天军, 关振群. 基于背景网格变形的动态网格移动方法[J]. 计算力学学报, 2012, 29(1): 105-110.[65] Zhang J L, Chen H Q. Research on dynamic mesh method based on unstructure background mesh[J]. Aeronautical Computing Technique, 2012, 42(2): 95-99. (in Chinese) 张加乐, 陈红全. 基于非结构背景网格的动网格方法研究[J]. 航空计算技术, 2012, 42(2): 95-99.[66] Zheng G N, Yang G W. Hybrid grid deformation method based on background grid[J]. Journal of Vibration Engineering, 2011, 24(5): 473-481. (in Chinese) 郑冠男, 杨国伟. 基于背景网格的混合网格变形方法[J]. 振动工程学报, 2011, 24(5): 473-481.[67] Zhang L P, Duan X P, Chang X H, et al. A hybrid dynamic grid generation technique for morphing bodies based on Delaunay graph and local remeshing[J]. Acta Aerodynamica Sinica, 2009, 27(1): 32-40. (in Chinese) 张来平, 段旭鹏, 常兴华, 等. 基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J]. 空气动力学学报, 2009, 27(1): 32-40.[68] Xu M, Chen S L. Study of date exchange method for coupling computational CFD/CSD[J]. Chinese Journal of Applied Mechanics, 2004, 21(2): 33-37. (in Chinese) 徐敏, 陈士橹. CFD/CSD耦合计算研究[J]. 应用力学学报, 2004, 21(2): 33-37.[69] Su B, Qian R J, Yuan X F. Advances in research on theory and method of data exchange on coupling interface for FSI analysis[J]. Spatial Structures, 2010, 16(1): 3-10. (in Chinese) 苏波, 钱若军, 袁行飞. 流固耦合界面信息传递理论和方法研究进展[J]. 空间结构, 2010, 16(1): 3-10.[70] Stein K, Benney R, Kalro V, et al. Parachute fluid-structure interactions: 3-D computation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(2): 373-386.[71] Boer A D, Zuijlen A H, Bijl H. Review of coupling methods for non-matching meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(8): 1515-1525.[72] Goura G S, Badcock K J, Woodgate M A, et al. A data exchange method for fluid-structure interaction problems[J]. The Aeronautical Journal, 2001, 105(1): 215-221.[73] Bathe K J, Zhang H, Shan J. Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers & Structures, 1999, 72 (1): 1-16.[74] Harder R L, Desmarais R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191.[75] Smith M J, Hodges D H, Cesnik C E. Evaluation of computational algorithms suitable for fluid-structure interactions[J]. Journal of Aircraft, 2000, 37(2): 282-294.[76] Yu Z W. Surface interpolation from irregularly distributed points using surface splines, with Fortran program[J]. Computers & Geosciences, 2001, 27(5): 877-882.[77] Becker A, Wendland H. Multivariate interpolation for fluid-structure problems using radial basis functions[J]. Aerospace Science and Technology, 2001, 5(2): 125-134.[78] Han X K, Qian R J, Su B, et al. Data exchange method for fluid-structure interaction based on interpolation algorithm adopting compactly supported radial based function[J]. Journal of Tongji University: Natural Science, 2011, 39(1): 48-52. (in Chinese) 韩向科, 钱若军, 苏波, 等. 基于紧支径向基函数的流固交互作用数据传递[J]. 同济大学学报: 自然科学版, 2011, 39(1): 48-52.[79] Wang G. New type of grid generation technique together with the high efficiency and high accuracy scheme researches for complex flow simulation[D]. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2006. (in Chinese) 王刚. 复杂流动的网格技术及高效、高精度算法研究[D]. 西安: 西北工业大学航空学院, 2006.[80] Zhang W W, Wang B B, Ye Z Y. High efficient numerical method for LCO analysis in transonic flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 42(6): 1023-1033. (in Chinese) 张伟伟, 王博斌, 叶正寅. 跨音速极限环型颤振的高效数值分析方法[J]. 力学学报, 2011, 42(6): 1023-1033.[81] Zhang W W, Wang B B, Ye Z Y, et al. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.[82] Zhang W, Zhang W W, Quan J G, et al. Gust alleviation of transonic wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 962-969. (in Chinese) 张慰, 张伟伟, 全景阁, 等. 跨音速机翼阵风减缓研究[J]. 力学学报, 2012, 44(6): 962-969. |