[1] Broucke R A. Long-term third-body effects via double averag-ing[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1) : 27-32.
[2] Bertachini de Almeida Prado A F. Third-body perturbation in orbits around natural satellites[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1) : 33-40.
[3] R. C. Domingos, R. V. deMoraes, and A. F. B. A. Prado, “Thirdbody perturbation in the case of elliptic orbits for the disturbing body,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Mackinac Island, Mich, USA, August 2007.
[4] Domingos R d C, de Moraes R V, de Almeida Prado A. Third-body perturbation in the case of elliptic orbits for the disturbing body[J]. Mathematical Problems in Engineering, 2008, 2008 : 1-14.
[5] Roscoe, C.W.T., Vadali, S.R., Alfriend, K.T.: Third-body per-turbation effects on satellite formations. J. Astronaut. Sci. 60(3–4), 408–433 (2015). https://doi.org/10.1007/s40295-015-0057-x
[6] Lara,M.: Simplified equations for computing science orbits around planetary satellites. J. Guid. Control Dyn. 31(1), 172–181 (2008). https://doi.org/10.2514/1.31107
[7] Lara, M., Palacián, J.F.: Hill problem analytical theory to the order four: application to the computation of frozen orbits around planetary satellites. Math. Probl. Eng. 2009, 1–18 (2009). https://doi.org/10.1155/ 2009/753653
[8] Giacaglia, G.E., Murphy, J.P., Felsentreger, T.L.: A semi-analytic theory for the motion of a lunar satellite. Celest. Mech. Dyn. Astron. 3(1), 3–66 (1970).
[9] Giacaglia, G.E., Murphy, J.P., Felsentreger, T.L., The motion of a satellite of the moon, NASA Reports…………
[10] Nie, T., Gurfil, P.: Lunar frozen orbits revisited. Celest. Mech. Dyn. Astron. 130(10), 61 (2018).
[11] d’Avanzo P, Teofilatto P, Ulivieri C. Long-term effects on lunar orbiter[J]. Acta Astronautica, 1997, 40(1) : 13-20.
[12] Abad A, Elipe A, Tresaco E. Analytical model to find frozen orbits for a lunar orbiter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3) : 888-898.
[13] D. Folta and D. Quinn, “Lunar frozen orbits,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, AIAA 2006-6749, pp. 1915–1932, August 2006.
[14] T. A. Ely, “Stable constellations of frozen elliptical inclined lunar orbits,” Journal of the Astronautical Sciences, vol. 53, no. 3, pp.301–316, 2005.
[15] T. A. Ely and E. Lieb, “Constellations of elliptical inclined lunar orbits providing polar and global coverage,” Journal of the Astronautical Sciences, vol. 54, no. 1, pp. 53–67, 2006.
[16] Gramling, J.J., Ngan, Y. P., Quinn, D.A., Folta, D.C., Leroy, B.E., and Long, A.C., “A Lunar Communication and Navigation Satellite Concept for the Robotic Lunar Exploration Program,” 24th AIAA International Communications Satellite Systems Conference (ICSSC), 11 - 14 June 2006, San Diego, California, AIAA 2006-5364.
[17] Advanced Communications and Navigation Satellite Conceptu-al Design for Lunar Network-Centric Operations
[18] FOLKNER W M, WILLIAMS J G, BOGGS D H. The planetary and lunar Ephemeris DE421: IOM 343R-08- 003[R]. Pasadena: Jet Propulsion Laboratory, 2008.
[19] Konopliv, A.S., Park, R.S., Dah-Ning Yuan, Asmar, S.W., etc. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission[J]. Journal of Geophysical Research: Planets, 2013, 118(7): 1415-1434.
[20] Cutting G. H, Born G. H., Frautnick J. C. Orbit Analysis For SEASAT-A. Journal of the Astronautical Sciences, 1978, 16:315-342 |