1 |
LAURSEN L. No More “No Service”: Cellphones will increasingly text via satellite[J]. IEEE Spectrum, 2023, 60(1): 52-55.
|
2 |
NEINAVAIE M, KHALIFE J, KASSAS Z M. Acquisition, Doppler tracking, and positioning with starlink LEO satellites: First results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2606-2610.
|
3 |
ZHAO Z, WEN S R, LI F M. Vibration analysis of multi-span lattice sandwich beams using the assumed mode method[J]. Composite Structures, 2018, 185: 716-727.
|
4 |
MY C A, BIEN D X, LE C H, et al. An efficient finite element formulation of dynamics for a flexible robot with different type of joints[J]. Mechanism and Machine Theory, 2019, 134: 267-288.
|
5 |
WINGET J M, HUSTON R L. Cable dynamics—a finite segment approach[J]. Computers & Structures, 1976, 6(6): 475-480.
|
6 |
GUPTA A, TALHA M. Recent development in modeling and analysis of functionally graded materials and structures[J]. Progress in Aerospace Sciences, 2015, 79: 1-14.
|
7 |
张秀云, 宗群, 窦立谦, 等. 柔性航天器振动主动抑制及姿态控制[J]. 航空学报, 2019, 40(4): 322503.
|
|
ZHANG X Y, ZONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 322503 (in Chinese).
|
8 |
朱尊红, 戈新生. 单翼太阳帆板航天器非约束模态动力学建模及特性研究[J]. 振动与冲击, 2022, 41(9): 99-106.
|
|
ZHU Z H, GE X S. Unconstrained modal dynamic modeling and characteristics for a spacecraft with a single wing solar array[J]. Journal of Vibration and Shock, 2022, 41(9): 99-106 (in Chinese).
|
9 |
崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解[J]. 航空学报, 2010, 31(8): 1565-1571.
|
|
CUI N G, LIU J F, RONG S Y. Solar sail spacecraft dynamic modeling and solving[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1565-1571 (in Chinese).
|
10 |
ANGELETTI F. Control-oriented modelling of an integrated attitude and vibration suppression architecture for large space structures[D]. Rome: Sapienza University of Rome, 2020: 1-25.
|
11 |
NAZARI M, BUTCHER E A, YUCELEN T, et al. Decentralized consensus control of a rigid-body spacecraft formation with communication delay[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 838-851.
|
12 |
WANG W, WU D, MENGALI G, et al. Asteroid hovering missions from a fuel-consumption viewpoint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(7): 1374-1382.
|
13 |
MISRA G, SANYAL A K. Analysis of orbit-attitude coupling of spacecraft near small solar system bodies[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2015.
|
14 |
刘玉亮, 邬树楠, 张开明, 等. 重力姿轨耦合效应引起的太阳能电站轨道共振[J]. 航空学报, 2018, 39(12): 222194.
|
|
LIU Y L, WU S N, ZHANG K M, et al. Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222194 (in Chinese).
|
15 |
SINCARSIN G B, HUGHES P C. Gravitational orbit-attitude coupling for very large spacecraft[J]. Celestial Mechanics, 1983, 31(2): 143-161.
|
16 |
SCHAUB H, JUNKINS J L. Analytical mechanics of space systems [M]. Reston: AIAA, 2003.
|
17 |
ALLARD C, SCHAUB H, PIGGOTT S. General hinged rigid-body dynamics approximating first-order spacecraft solar panel flexing[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1291-1299.
|
18 |
LEE T, LEOK M, MCCLAMROCH N H. Lie group variational integrators for the full body problem in orbital mechanics[J]. Celestial Mechanics and Dynamical Astronomy, 2007, 98(2): 121-144.
|
19 |
梅亚飞, 廖瑛, 龚轲杰, 等. SE(3)上航天器姿轨耦合固定时间容错控制[J]. 航空学报, 2021, 42(11): 525089.
|
|
MEI Y F, LIAO Y, GONG K J, et al. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525089 (in Chinese).
|
20 |
张洪珠, 叶东, 孙兆伟. 输入量化下航天器位姿一体化预设时间控制[J]. 航空学报, 2023, 44(22): 328558.
|
|
ZHANG H Z, YE D, SUN Z W. Predefined-time integrated pose control for spacecraft under input quantization[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 328558 (in Chinese).
|
21 |
刘明, 范睿超, 邱实, 等. 基于全驱系统理论的航天器姿轨预设性能控制[J]. 航空学报, 2024, 45(1): 628318.
|
|
LIU M, FAN R C, QIU S, et al. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628318 (in Chinese).
|
22 |
姜斌, 孟庆开, 杨浩. 航天器姿轨控制研究综述: 微分几何控制方法[J]. 控制与决策, 2023, 38(8): 2079-2092.
|
|
JIANG B, MENG Q K, YANG H. A survey on spacecraft attitude and orbit control: Differential geometric control approaches[J]. Control and Decision, 2023, 38(8): 2079-2092 (in Chinese).
|
23 |
易中贵, 岳宝增, 刘峰, 等. 刚-液耦合航天器系统的Hamilton结构及稳定性分析[J]. 应用数学和力学, 2023, 44(5): 499-512.
|
|
YI Z G, YUE B Z, LIU F, et al. Hamiltonian structures and stability analysis for rigid-liquid coupled spacecraft systems[J]. Applied Mathematics and Mechanics, 2023, 44(5): 499-512 (in Chinese).
|
24 |
YI Z G, YUE B Z. Study on the dynamics, relative equilibria, and stability for liquid-filled spacecraft with flexible appendage[J]. Acta Mechanica, 2022, 233(9): 3557-3578.
|
25 |
LEE T, LEVE F. Lagrangian mechanics and Lie group variational integrators for spacecraft with imbalanced reaction wheels[C]∥2014 American Control Conference. Piscataway: IEEE Press, 2014: 3122-3127.
|
26 |
LEE T, LEOK M, MCCLAMROCH N H. High-fidelity numerical simulation of complex dynamics of tethered spacecraft[J]. Acta Astronautica, 2014, 99: 215-230.
|
27 |
ANGELETTI F, GASBARRI P, SABATINI M. Optimal design and robust analysis of a net of active devices for micro-vibration control of an on-orbit large space antenna[J]. Acta Astronautica, 2019, 164: 241-253.
|
28 |
LEE T. Computational geometric mechanics and control of rigid bodies[D]. Ann Arbor: University of Michigan, 2008: 12-14.
|
29 |
CURTIS H D. Orbital maneuvers[M]∥Orbital mechanics for engineering students. Amsterdam: Elsevier, 2021: 287-350.
|
30 |
IZADI M, SANYAL A K. Rigid body pose estimation based on the Lagrange-d’Alembert principle[J]. Automatica (Journal of IFAC), 2016, 71(C): 78-88.
|