1 |
高翔, 杨青真, 施永强, 等. 出口形式对双S弯排气系统红外特性影响研究[J]. 红外与激光工程, 2015, 44(6): 1726-1732.
|
|
GAO X, YANG Q Z, SHI Y Q, et al. Numerical simulation of radiation intensity of double S-shaped exhaust system with different outlet shapes[J]. Infrared and Laser Engineering, 2015, 44(6): 1726-1732 (in Chinese).
|
2 |
邓洪伟, 尚守堂, 金海, 等. 航空发动机隐身技术分析与论述[J]. 航空科学技术, 2017, 28(10): 1-7.
|
|
DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7 (in Chinese).
|
3 |
JOHANSSON M. Propulsion integration in an UAV[C]∥24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006.
|
4 |
JOHANSSON M, DALENBRING M. Calculation of IR signatures from airborne vehicles[C]∥Proceedings Volume 6228, Modeling and Simulation for Military Applications. Bellingham: SPIE, 2006: 971-982.
|
5 |
RAO N A, BOOMADEV, SHUBHAM, et al. IR signature studies of serpentine nozzle with elliptic exit[C]∥International Conference on Theoretical Applied Computational and Experimental Mechanics. Kharagpur: Indian Institute of Technology, 2017.
|
6 |
RAO N A, ARORA R, KUSHARI A. High subsonic flow field from the serpentine nozzle[C]∥8th International Conference on Fluid Flow, Heat and Mass Transfer, 2021.
|
7 |
AN S Y, KIM W C, OH S H. A study on the effect of engine nozzle configuration on the plume IR signature[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2012, 40(8): 688-694.
|
8 |
LEE Y R, LEE J W, SHIN C M, et al. Characteristics of flow field and IR of double serpentine nozzle plume for varying cross sectional areas and flight conditions in UCAV[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2021, 49(8): 689-698.
|
9 |
桑学仪, 吉洪湖, 王丁. 长径比和偏径比对双S形二元喷管性能的影响[J]. 红外技术, 2019, 41(5): 443-449.
|
|
SANG X Y, JI H H, WANG D. Influence of length-diameter ratio and offset-diameter ratio on performance of serpentine 2-D nozzle[J]. Infrared Technology, 2019, 41(5): 443-449 (in Chinese).
|
10 |
王宇恒, 吉洪湖, 程稳, 等. 收扩喷管设计对双S形二元排气系统气动与红外特征的影响[J]. 红外与激光工程, 2021, 50(11): 20210084.
|
|
WANG Y H, JI H H, CHENG W, et al. Influence of design of convergent-divergent nozzle on aerodynamic and infrared characteristics of serpentine 2-D exhaust system[J]. Infrared and Laser Engineering, 2021, 50(11): 20210084 (in Chinese).
|
11 |
CHENG W, WANG Z, ZHOU L, et al. Influences of shield ratio on the infrared signature of serpentine nozzle[J]. Aerospace Science and Technology, 2017, 71(12): 299-311.
|
12 |
程稳, 周莉, 王占学, 等. 几何参数对S弯喷管红外辐射特性的影响[J]. 推进技术, 2018, 39(9): 1974-1985.
|
|
CHENG W, ZHOU L, WANG Z X, et al. Effects of geometric parameters on infrared signature of serpentine nozzle[J]. Journal of Propulsion Technology, 2018, 39(9): 1974-1985 (in Chinese).
|
13 |
CHENG W, WANG Z X, ZHOU L, et al. Investigation of infrared signature of serpentine nozzle for turbofan[J]. Journal of Thermophysics and Heat Transfer, 2018, 33(1): 170-178.
|
14 |
丁娟, 杨青真, 李翔, 等. 不同出口型式S型喷管红外辐射特性研究[J]. 科学技术与工程, 2014, 14(7): 273-276.
|
|
DING J, YANG Q Z, LI X, et al. Research on the infrared radiation characteristic of S-shaped nozzles with different outlet[J]. Science Technology and Engineering, 2014, 14(7): 273-276 (in Chinese).
|
15 |
GAO X, YANG Q Z, ZHOU H, et al. Numerical simulation on the infrared radiation characteristics of S-shaped nozzles[J]. Applied Mechanics and Materials, 2013, 482(12): 282-286.
|
16 |
黄章斌, 管留, 李晓霞, 等. 喷管类型对飞行器排气系统辐射特性的影响[J]. 红外技术, 2021, 43(6): 587-591.
|
|
HUANG Z B, GUAN L, LI X X, et al. Numerical simulation of radiation characteristics of aircraft exhaust systems with different nozzles[J]. Infrared Technology, 2021, 43(6): 587-591 (in Chinese).
|
17 |
MAHULIKAR S P, POTNURU S K, KOLHE P S. Analytical estimation of solid angle subtended by complex well-resolved surfaces for infrared detection studies[J]. Appl. Opt., 2007, 46(22): 4991-4998.
|
18 |
CHEN H Y, ZHANG H B, XI Z H, et al. Modeling of the turbofan with an ejector nozzle based on infrared prediction[J]. Applied Thermal Engineering, 2019, 159: 113910.
|
19 |
柳亚冰, 徐植桂, 叶东鑫, 等. 涡扇发动机最小红外特征模式性能寻优控制研究[J]. 推进技术, 2020, 41(5): 1168-1177.
|
|
LIU Y B, XU Z G, YE D X, et al. A study on performance seeking control of minimum infrared characteristic mode for turbofan engine[J]. Journal of Propulsion Technology, 2020, 41(5): 1168-1177 (in Chinese).
|
20 |
孙啸林, 王占学, 周莉, 等. 基于多参数耦合的S弯隐身喷管设计方法研究[J]. 工程热物理学报, 2015, 36(11): 2371-2375.
|
|
SUN X L, WANG Z X, ZHOU L, et al. The design method of serpentine stealth nozzle based on coupled parameters[J]. Journal of Engineering Thermophysics, 2015, 36(11): 2371-2375 (in Chinese).
|
21 |
程稳. S弯喷管红外辐射特性预测及优化设计方法[D]. 西安: 西北工业大学, 2019: 89-95.
|
|
CHENG W. Infrared signature prediction and optimization design method for serpentine nozzle[D]. Xi’an: Northwestern Polytechnical University, 2019: 89-95 (in Chinese).
|
22 |
程稳, 孙啸林, 马姗. 基于假设气体法的燃气辐射特性计算模型[J]. 红外与激光工程, 2022, 51(7): 20220286.
|
|
CHENG W, SUN X L, MA S. Fictitious gas-based model for calculating radiation characteristics of gas[J]. Infrared and Laser Engineering, 2022, 51(7): 20220286 (in Chinese).
|
23 |
TASHKUN S A, PEREVALOV V I.CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(9):1403-1410.
|
24 |
ROTHMAN L S, GORDON I E, BARBER R J, et al. HITEMP, the high-temperature molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150.
|
25 |
王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社, 2006: 182-187.
|
|
WANG X Y. Fundamentals of gas dynamics[M]. Xi’an: Northwestern Polytechnical University Press, 2006: 182-187 (in Chinese).
|
26 |
王丰, 吉洪湖, 于明飞. 涡扇发动机收敛排气系统进口总温总压对喷流中心线温度分布影响[J]. 航空动力学报, 2016, 31(4): 816-822.
|
|
WANG F, JI H H, YU M F. Influence of total temperature and pressure at the inlet of convergent exhaust system of turbofan engine on temperature distribution at plume centerline[J]. Journal of Aerospace Power, 2016, 31(4): 816-822 (in Chinese).
|
27 |
孟凡斌, 郑丽. 基于LOWTRAN 7的红外大气透过率计算方法[J]. 光电技术应用, 2009, 24(3): 29-32, 66.
|
|
MENG F B, ZHENG L. LOWTRAN 7-based calculation method of IR transmittance in the atmosphere[J]. Electro-Optic Technology Application, 2009, 24(3): 29-32, 66 (in Chinese).
|