1 |
YIN S, CAVALIERE P, ALDWELL B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications[J]. Additive Manufacturing, 2018, 21: 628-650.
|
2 |
ASSADI H, KREYE H, GÄRTNER F, et al. Cold spraying—A materials perspective[J]. Acta Materialia, 2016, 116: 382-407.
|
3 |
吴洪键, 李文波, 邓春明, 等. 冷喷涂增材制造关键技术[J]. 中国表面工程, 2020, 33(4): 1-15.
|
|
WU H J, LI W B, DENG C M, et al. Key techniques of cold spray additive manufacturing[J]. China Surface Engineering, 2020, 33(4): 1-15 (in Chinese).
|
4 |
YANG K, LI W Y, YANG X W, et al. Effect of heat treatment on the inherent anisotropy of cold sprayed copper deposits[J]. Surface and Coatings Technology, 2018, 350: 519-530.
|
5 |
SAMPLE C M, CHAMPAGNE V K, NARDI A T, et al. Factors governing static properties and fatigue, fatigue crack growth, and fracture mechanisms in cold spray alloys and coatings/repairs: A review[J]. Additive Manufacturing, 2020, 36: 101371.
|
6 |
GUO D L, WANG Y, FERNANDEZ R, et al. Cold spray for production of in situ nanocrystalline MCrAlY coatings—Part I: Process analysis and microstructure characterization[J]. Surface and Coatings Technology, 2021, 409: 126854.
|
7 |
管宇, 陈亮, 曹奇凯. 基于增量考核的飞机延寿方法与应用[J]. 航空学报, 2021, 42(8): 525782.
|
|
GUAN Y, CHEN L, CAO Q K. Aircraft life extension based on incremental assessment: Method and application[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525782 (in Chinese).
|
8 |
LI W Y, CAO CC, YIN S. Solid-state cold spraying of Ti and its alloys: A literature review[J]. Progress in Materials Science, 2020, 110: 100633.
|
9 |
YU T Y, CHEN M J, WU Z R. Experimental and numerical study of deposition mechanisms for cold spray additive manufacturing process[J]. Chinese Journal of Aeronautics, 2022, 35(2): 276-290.
|
10 |
BAE G, KUMAR S, YOON S, et al. Bonding features and associated mechanisms in kinetic sprayed titanium coatings[J]. Acta Materialia, 2009, 57(19): 5654-5666.
|
11 |
YIN S, SUO X K, SU J Q, et al. Effects of substrate hardness and spray angle on the deposition behavior of cold-sprayed Ti particles[J]. Journal of Thermal Spray Technology, 2014, 23(1): 76-83.
|
12 |
ZAHIRI S H, MAYO, JAHEDI M. Characterization of cold spray titanium deposits by X-ray microscopy and microtomography[J]. Microscopy and Microanalysis, 2008, 14(3): 260-266.
|
13 |
CAVALIERE P, SILVELLO A. Processing conditions affecting residual stresses and fatigue properties of cold spray deposits[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9): 1857-1862.
|
14 |
WONG W, IRISSOU E, VO P, et al. Cold spray forming of inconel 718[J]. Journal of Thermal Spray Technology, 2013, 22(2): 413-421.
|
15 |
SANSOUCY E, KIM G E, MORAN A L, et al. Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process[J]. Journal of Thermal Spray Technology, 2007, 16(5): 651-660.
|
16 |
BHATTIPROLU V S, JOHNSON K W, OZDEMIR O C, et al. Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J]. Surface and Coatings Technology, 2018, 335: 1-12.
|
17 |
CHEN C Y, XIE Y C, YAN X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing[J]. Additive Manufacturing, 2019, 27: 595-605.
|
18 |
REN Y Q, KING P C, YANG Y S, et al. Characterization of heat treatment-induced pore structure changes in cold-sprayed titanium[J]. Materials Characterization, 2017, 132: 69-75.
|
19 |
AHMED F, BERNDT CHRISTOPHER C, REHAN A. Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review[J]. Surface and Coatings Technology, 2021, 409: 126835.
|
20 |
YIN S, WANG X F, XU B P, et al. Examination on the calculation method for modeling the multi-particle impact process in cold spraying[J]. Journal of Thermal Spray Technology, 2010, 19(5): 1032-1041.
|
21 |
SCHMIDT T, ASSADI H, GÄRTNER F, et al. From particle acceleration to impact and bonding in cold spraying[J]. Journal of Thermal Spray Technology, 2009, 18(5): 794-808.
|
22 |
SONG X, NG K L, CHEA J M K, et al. Coupled Eulerian-Lagrangian (CEL) simulation of multiple particle impact during metal cold spray process for coating porosity prediction[J]. Surface and Coatings Technology, 2020, 385: 125433.
|
23 |
WEILLER S, DELLORO F. A numerical study of pore formation mechanisms in aluminium cold spray coatings[J]. Additive Manufacturing, 2022, 60: 103193.
|
24 |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
|
25 |
KUMAR S, BAE G, LEE C. Influence of substrate roughness on bonding mechanism in cold spray[J]. Surface and Coatings Technology, 2016, 304: 592-605.
|
26 |
GRUJICIC M, ZHAO C L, DEROSSET W S, et al. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process[J]. Materials & Design, 2004, 25(8): 681-688.
|
27 |
SCHMIDT T, GÄRTNER F, ASSADI H, et al. Development of a generalized parameter window for cold spray deposition[J]. Acta Materialia, 2006, 54(3): 729-742.
|