1 |
姚德龙, 陈松. 固体火箭发动机羽流流速TDLAS测量方法研究[J]. 应用光学, 2020, 41(2): 342-347.
|
|
YAO D L, CHEN S. Study on TDLAS measurement method for plume velocity of solid rocket motor[J]. Journal of Applied Optics, 2020, 41(2): 342-347 (in Chinese).
|
2 |
翁惠焱, 蔡国飙, 郑鸿儒, 等. 背景压强对电推进羽流场影响的数值模拟[J]. 北京航空航天大学学报, 2022, 48(10): 1854-1862.
|
|
WENG H Y, CAI G B, ZHENG H R, et al. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862 (in Chinese).
|
3 |
唐林卡, 李晓轩, 孙朝翔, 等. 羽流问题对飞行器飞行影响研究[J]. 导弹与航天运载技术, 2021(6): 64-68.
|
|
TANG L K, LI X X, SUN Z X, et al. Research on the influence of plume on vehicle flight[J]. Missiles and Space Vehicles, 2021(6): 64-68 (in Chinese).
|
4 |
吴靖, 蔡国飙. 基于压敏漆的多羽流气动力效应试验研究[J]. 北京航空航天大学学报, 2020, 46(6): 1080-1088.
|
|
WU J, CAI G B. Experimental research on aerodynamic force effect of multiple plumes based on pressure-sensitive paint technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1080-1088 (in Chinese).
|
5 |
薛凯心. 基于TRIZ理论的户外运动水杯创新设计研究[D]. 成都: 四川师范大学, 2021.
|
|
XUE K X. Innovative design of outdoor sports cup based on TRIZ theory[D].Chengdu: Sichuan Normal University, 2021 (in Chinese).
|
6 |
吴晓. 基于TRIZ的阀门定位器创新设计[D]. 济南: 山东建筑大学, 2022.
|
|
WU X. Innovative design of valve positioner based on TRIZ[D].Jinan: Shandong Jianzhu University, 2022 (in Chinese).
|
7 |
马延强, 肖军杰, 郭顺生, 等. 基于TRIZ理论的模切压力试验平台设计与分析[J]. 包装工程, 2022, 43(13): 165-171.
|
|
MA Y Q, XIAO J J, GUO S S, et al. Design and analysis of die-cutting pressure test platform based on TRIZ theory[J]. Packaging Engineering, 2022, 43(13): 165-171 (in Chinese).
|
8 |
杨仓慧. 改进TRIZ理论在产品工艺设计中的应用研究[D]. 邯郸: 河北工程大学, 2020.
|
|
YANG C H. Research on the application of improved TRIZ theory in product process design[D].Handan: Hebei University of Engineering, 2020 (in Chinese).
|
9 |
黄斌达, 周来水, 安鲁陵, 等. 集成TRIZ的机加夹具方案公理化设计[J]. 仪器仪表学报, 2017, 38(4): 1031-1040.
|
|
HUANG B D, ZHOU L S, AN L L, et al. Configuration axiomatic design method for the machining fixtures integrating TRIZ[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1031-1040 (in Chinese).
|
10 |
乔学昱. 基于TRIZ的柔性外骨骼系统设计与研究[D]. 淄博: 山东理工大学, 2019.
|
|
QIAO X Y. Design and research on flexible exoskeleton system based on TRIZ[D].Zibo: Shandong University of Technology, 2019 (in Chinese).
|
11 |
孙永伟, 谢尔盖·伊克万科. TRIZ打开创新之门的金钥匙I[M], 北京:科学出版社, 2022: 57-77.
|
|
SUN Y W, IKOVENKO S. TRIZ - the golden key for innovation I[M]. Beijing: Science Press, 2022: 57-77 (in Chinese).
|
12 |
欧陟. 功率元件低气压放电规律与绝缘可靠性分析[D]. 长沙: 国防科技大学, 2015.
|
|
OU Z. A research on the discharge regularity and insulation reliability of power components under low pressure conditions[D].Changsha: National University of Defense Technology, 2015 (in Chinese).
|
13 |
王宇平, 夏玉林. 星载微波设备低气压放电及其防范[J]. 上海航天, 2005, 22(): 65-68.
|
|
WANG Y P, XIA Y L. Low pressure discharge of space-borne microwave equipment and its prevention[J]. Aerospace Shanghai (Chinese & English), 2005, 22(Sup 1): 65-68 (in Chinese).
|
14 |
张华, 宗益燕, 信太林, 等. 航天器单机产品通用低气压放电试验条件[J]. 航天器环境工程, 2016, 33(6): 643-648.
|
|
ZHANG H, ZONG Y Y, XIN T L, et al. General test conditions for low pressure discharge of spacecraft units[J]. Spacecraft Environment Engineering, 2016, 33(6): 643-648 (in Chinese).
|
15 |
李航. 几种典型气体低气压放电行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 35-39.
|
|
LI H. Research on discharge behavior of typical gases at low pressure[D].Harbin: Harbin Institute of Technology, 2018: 35-39 (in Chinese)
|
16 |
安笑笑, 陈俊, 苏璞, 等. 星载大功率固放局部低气压放电的防控技术[J]. 空间电子技术, 2022, 19(1): 102-105.
|
|
AN X X, CHEN J, SU P, et al. Prevention and control technology on partial low-pressure discharge of solid state power amplifiers in satellite-borne[J]. Space Electronic Technology, 2022, 19(1): 102-105 (in Chinese).
|
17 |
张本栋, 江军, 李治, 等. 面向未来多电飞机的低气压下局部放电[J]. 航空学报, 2022, 43(7): 325374.
|
|
ZHANG B D, JIANG J, LI Z, et al. Partial discharge characteristics of future more electric aircraft under low air pressure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 325374 (in Chinese).
|
18 |
刘尚, 张悦扬, 王亚楠, 等. 基于仿生设计的物理矛盾求解方法[J]. 机械设计与研究, 2020, 36(6): 15-19, 23.
|
|
LIU S, ZHANG Y Y, WANG Y N, et al. A method of root conflict problem solving based on bio-inspired design[J]. Machine Design & Research, 2020, 36(6): 15-19,23 (in Chinese).
|
19 |
王麒郦, 李艳, 刘富, 等. 基于物理矛盾分析的带式输送机托辊专利规避设计[J]. 绿色包装, 2017(8): 41-46.
|
|
WANG Q L, LI Y, LIU F, et al. Patent circumvention of belt conveyor based on physical contradiction analysis[J]. Green Packaging, 2017(8): 41-46 (in Chinese).
|
20 |
熊开封, 陈轲, 解鑫. 基于矛盾分析的144 MHz无线电测向机创新研究[J]. 机械设计, 2014, 31(11): 8-13.
|
|
XIONG K F, CHEN K, XIE X. Innovation study of the 144 MHz radio direction finder based on contradiction[J]. Journal of Machine Design, 2014, 31(11): 8-13 (in Chinese).
|
21 |
孙永伟, 西蒙·利特文, 弗拉基米尔·格拉西莫夫, 等. TRIZ打开创新之门的金钥匙II[M], 北京:科学出版社, 2021: 85-129.
|
|
SUN Y W, LITVIN S, GERASIMOV V, et al. TRIZ - the golden key for innovation II[M]. Beijing: Science Press, 2021: 85-129 (in Chinese).
|
22 |
董娅凡, 檀润华, 聂子丰, 等. 物质-场与设计过程复杂性理论集成的产品再设计过程模型研究[J]. 机械设计, 2020, 37(2): 47-52.
|
|
DONG Y F, TAN R H, NIE Z F, et al. Research on the product redesign process based on the sub-field analysis and the theory of design-centric complexity[J]. Journal of Machine Design, 2020, 37(2): 47-52 (in Chinese).
|
23 |
段秀玲. 基于标准解的公理设计中解耦方法的研究[D]. 天津: 河北工业大学, 2016: 25-34.
|
|
DUAN X L. Research on decoupling method in axiomatic design based on standard solution[D].Tianjin: Hebei University of Technology, 2016: 25-34 (in Chinese).
|
24 |
刘泽元, 冯尧, 梁硕, 等. 航天器热试验加热电缆绝缘自动测试系统的设计[J]. 电子测量技术, 2017, 40(9): 252-256.
|
|
LIU Z Y, FENG Y, LIANG S, et al. Design of cable insulation automatic test system used in spacecraft thermal test[J]. Electronic Measurement Technology, 2017, 40(9): 252-256 (in Chinese).
|
25 |
林隽昊. 一种具备修复功能的任意大小电路板绝缘喷漆装置: CN111940215A[P]. 2020-11-17.
|
|
LIN J H. Insulating paint spraying device for circuit boards of any sizes and with repairing function: CN111940215A[P]. 2020-11-17 (in Chinese).
|