高郭池1(), 张波2, 全敬泽1, 尹崇1, 丁丽1, 姜裕标3
收稿日期:
2023-02-07
修回日期:
2023-02-27
接受日期:
2023-03-13
出版日期:
2024-01-15
发布日期:
2023-03-21
通讯作者:
高郭池
E-mail:gaogc@syacc.org
基金资助:
Guochi GAO1(), Bo ZHANG2, Jingze QUAN1, Chong YIN1, Li DING1, Yubiao JIANG3
Received:
2023-02-07
Revised:
2023-02-27
Accepted:
2023-03-13
Online:
2024-01-15
Published:
2023-03-21
Contact:
Guochi GAO
E-mail:gaogc@syacc.org
Supported by:
摘要:
民用飞机如果申请已知结冰条件下飞行(FIKI),应按照除防冰相关适航规章条款要求进行表明符合性适航验证,其中自然结冰试飞是必须完成的重要环节。以Y12F飞机自然结冰试飞为例,以中国民用航空局(CAAC)和美国联邦航空管理局(FAA)发布的已知结冰条件下飞行相关指导文件为基础,结合Y12F飞机自然结冰试飞适航审定过程,分析总结了除防冰系统、测试设备及安装、试飞空域、结冰大气条件、试飞内容、试飞状态、试飞程序、试飞结果和分析以及结冰探测、结冰大气探测、冰积聚情况监测等方面的适航审定要求和关键技术,并对试飞过程中发现问题的分类、解决措施、设计改进方案以及完成的补充验证工作进行了阐述。经CAAC和FAA同步审查,Y12F飞机获得CAAC和FAA已知结冰条件下飞行的批准。构建的自然结冰试飞适航审定方法,成为FIKI适航验证重要实践指导性材料。
中图分类号:
高郭池, 张波, 全敬泽, 尹崇, 丁丽, 姜裕标. 正常类飞机自然结冰试飞适航审定技术[J]. 航空学报, 2024, 45(1): 128531-128531.
Guochi GAO, Bo ZHANG, Jingze QUAN, Chong YIN, Li DING, Yubiao JIANG. Airworthiness certification technology of normal aircraft natural icing flight test[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128531-128531.
1 | 殷时军, 冯振宇, 王大蕴. 适航审定能力提升[M]. 北京: 中国民航出版社, 2018: 238-243. |
YIN S J, FENG Z Y, WANG D Y. The capabilities enhanced through ARJ21-700 certification [M]. Beijing: China Civil Aviation Publishing House, 2018: 238-243 (in Chinese). | |
2 | 沈浩, 韩冰冰, 刘振侠, 等. 运输类飞机结冰适航合格审定[M]. 上海: 上海交通大学出版社, 2018: 1-12. |
SHEN H, HAN B B, LIU Z X, et al. Airworthiness certification of transport aircraft in icing conditions[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 1-12 (in Chinese). | |
3 | GREEN S D. A study of U.S. inflight icing accidents, 1978 to 2002[C]∥ 44th AIAA Aerospace sciences meeting and Exhibit. Reston: AIAA, 2006. |
4 | APPIAH K P. U.S. Inflight icing accidents and incidents, 2006 to 2010[D]. Knoxville: The University of Tennessee, 2011: 32-53. |
5 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
6 | CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. |
7 | POTAPCZUK M G. A review of NASA Lewis’ development plans for computational simulation of aircraft icing[C]∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. |
8 | BRAGG M, BROEREN A, STIRLING L. Ice-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
9 | 中华人民共和国国务院, 中华人民共和国中央军事委员会. 中华人民共和国飞行基本规则[M]. 北京: 中华人民共和国国务院, 中华人民共和国中央军事委员会, 2007. |
The State Council of the People’s Republic of China, The Central Military Commission of the People’s Republic of China. Flight basic rules of the People’s Republic of China[M]. Beijing: The State Council of the People’s Republic of China, The Central Military Commission of the People’s Republic of China, 2007 (in Chinese). | |
10 | Federal Aviation Administration. Turbojet, turboprop, and turbofan engine induction system icing and ice ingestion: AC20-147A [S]. Washington, D.C.: FAA, 2014. |
11 | Federal Aviation Administration. Pilot guide flight in icing conditions: AC91-74B [S]. Washington, D.C.: FAA, 2015. |
12 | HICKMAN G A, GERARDI J J, FENG Y X, et al. Icing sensor and ice protection system, Revision 3 : NASA CR-194245[S]. Washington, D.C.: NASA, 1990. |
13 | HEINRICH A, ROSS R, ZUMWALT G, et al. Aircraft icing handbook. Volume 2[M]. New Zealand: Civil Aviation Authority, 2000. |
14 | JONES A R, LEWIS W. Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment : NACA-TN-1855[S]. Washington, D.C.: NACA, 1949. |
15 | BROEREN A P, BRAGG M B. Effect of residual and intercycle ice accretions on airfoil performance: DOT/FAA/AR-02/68 [S]. Washington, D.C.: FAA, 2002. |
16 | PELLICANO P. Guidance for new airplane icing certification projects[C]∥ SAE 2007 Aircraft & Engine Icing International Conference. New York: SAE, 2007. |
17 | PELLICANO P. Supercooled large droplet (SLD) icing and certification of Part 23 airplanes[C]∥ FAA 2009 Small Airplane Directorate Program Managers Meeting. Washington, D.C.: FAA, 2009. |
18 | SHIN J, BOND T H. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel: NASA TM105374[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
19 | VECCHIONE L, DE MATTEIS P. An overview of the CIRA icing wind tunnel [C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
20 | GONSALEZ J, ARRINGTON E. Aerodynamic calibration of the NASA Lewis icing research tunnel (1997 tests)[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
21 | 李勤红, 乔建军, 陈增江. Y7-200A飞机自然结冰飞行试验[J]. 飞行力学, 1999, 17(2): 64-69. |
LI Q H, QIAO J J, CHEN Z J. Natural icing flight test for Y7⁃200A aircraft[J]. Flight Dynamics, 1999, 17(2): 64-69 (in Chinese). | |
22 | 仝建辉. 结冰对飞机适航性影响及试飞验证[D]. 西安: 西北工业大学, 2000: 5-66. |
TONG J H. The effect of icing on airworthiness of aircraft and certification flight test[D]. Xi’an: Northwestern Polytechnical University, 2000: 5-66 (in Chinese). | |
23 | 杨新亮. ARJ21-700飞机机翼防冰系统自然结冰试飞方法[J]. 飞行力学, 2014, 32(5): 460-463. |
YANG X L. ARJ21-700 aircraft WAI natural icing flight test approach[J]. Flight Dynamics, 2014, 32(5): 460-463 (in Chinese). | |
24 | 霍西恒, 王大伟, 李革萍. 民机防冰系统自然结冰试飞技术研究[J]. 民用飞机设计与研究, 2014, 1: 25-29. |
HUO X H, WANG D W, LI G P. Research of natural icing flight test of anti-ice system for civil aircraft[J]. Civil Aircraft Design and Research, 2014, 1: 25-29 (in Chinese). | |
25 | 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016. |
ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016 (in Chinese). | |
26 | 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016. |
LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2016 (in Chinese). | |
27 | 王宗衍. 冰风洞与结冰动力学[J]. 制冷学报, 1999, 20(4): 15-17. |
WANG Z Y. Icing wind tunnel and icing aerodynamics[J]. Journal of Refrigeration, 1999, 20(4): 15-17 (in Chinese). | |
28 | 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(6): 1010-1017. |
CHEN W J, ZHANG D L. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005, 20(6): 1010-1017 (in Chinese). | |
29 | 周莉, 徐浩军, 龚胜科, 等. 飞机结冰特性及防除冰技术研究[J]. 中国安全科学学报, 2010, 20(6): 105-110. |
ZHOU L, XU H J, GONG S K, et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal, 2010, 20(6): 105-110 (in Chinese). | |
30 | 屈亮, 李颖晖, 袁国强, 等. 基于相平面法的结冰飞机纵向非线性稳定域分析[J]. 航空学报, 2016, 37(3): 865-872. |
QU L, LI Y H, YUAN G Q, et al. Longitudinal nonlinear stabilizing region for icing aircraft based on phase-plane method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 865-872 (in Chinese). | |
31 | 周驰, 李颖晖, 郑无计, 等. 结冰飞机着陆阶段飞行安全包线确定及操纵应对策略[J]. 航空学报, 2018, 39(12): 122165. |
ZHOU C, LI Y H, ZHENG W J, et al. Flight safety envelope determination and maneuvering coping strategy for icing aircraft during landing phase[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122165 (in Chinese). | |
32 | 王梓旭, 沈浩, 郭龙, 等. 3 m×2 m结冰风洞云雾参数校测方法[J]. 实验流体力学, 2018, 32(2): 61-67. |
WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m × 2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67 (in Chinese). | |
33 | 倪章松, 刘森云, 王桥, 等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学, 2019, 33(6): 46-53. |
NI Z S, LIU S Y, WANG Q, et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53 (in Chinese). | |
34 | 郭向东, 张平涛, 张珂, 等. 3 m×2 m结冰风洞热流场品质提高及评估[J]. 实验流体力学, 2021, 35(4): 41-51. |
GUO X D, ZHANG P T, ZHANG K, et al. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51 (in Chinese). | |
35 | 郭向东, 张平涛, 赵照, 等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报, 2020, 41(10): 200-214. |
GUO X D, ZHANG P T, ZHAO Z, et al. Airworthiness application compliance verification of cloud flow field in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 200-214 (in Chinese). | |
36 | 于庆芳. Y12II型飞机结冰对其飞行特性影响的试飞研究[J]. 飞行力学, 1995, 13(2): 63-70. |
YU Q F. Flying test research of the icing and its effects on flight performance for Y12II aircraft[J]. Flight Dynamics, 1995, 13(2): 63-70 (in Chinese). | |
37 | 廖美东. Y12II型飞机防冰能力的飞行验证[J]. 飞行力学, 1989, 7(3): 66-73. |
LIAO M D. Certification of Y12II aircraft for flight capability in icing conditions[J]. Flight Dynamics, 1989, 7(3): 66-73 (in Chinese). | |
38 | 中国民用航空局. 正常类、实用类、特技类和通勤类飞机适航规定: CCAR-23-R3 [S]. 北京:中国民用航空局,2004. |
Civil Aviation Administration of China. Airworthiness standards: Normal, utility, acrobatic, and commuter category airplanes: CCAR-23-R3 [S]. Beijing:CAAC, 2004 (in Chinese). | |
39 | Federal Aviation Administration. CFR 14 Part 23 Airworthiness standards: Normal, utility, acrobatic, and commuter category airplanes [S]. Washington, D.C.: FAA, 2008. |
40 | Federal Aviation Administration. Certification of Part 23 airplanes for flight in icing conditions: AC23.1419-2D [S]. Washington, D.C.: FAA, 2007. |
41 | Federal Aviation Administration. Aircraft ice protection: AC20-73A [S]. Washington, D.C.: FAA, 2006. |
42 | POTAPCZUK M G, LEWICE E. An Euler based ice accretion code: NASA TM-105389[R] Washington, D.C.: NASA, 1992. |
43 | RUFF G A, BERKOWITZ B M. Users manual for the NASA Lewis ice accretion prediction code (LEWICE): NASA CR-185129[R]. Washington, D.C.: NASA, 1990. |
44 | MINGIONE G, BRANDI V, ESPOSITO B. Ice accretion prediction on multi-element airfoils: AIAA-1997-0177[R]. Reston: AIAA, 1997. |
45 | CROCE G, BEAUGENDRE H, HABASHI W G. CHT3D: FENSAP-ICE conjugate heat transfer computations with droplet impingement and runback effects: AIAA-2002-0386[R]. Reston: AIAA, 2002. |
46 | BARTLETT C S. An empirical look at tolerances in setting icing test conditions with particular application to icing similitude: DOT/FAA/CT-87/31[R]. Washington, D.C.: FAA, 1988. |
47 | BRAGG M, BROEREN A, ADDY H, et al. Airfoil ice-accretion aerodynamic simulation[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
48 | HEDDE T, GUFFOND D. Improvement of the ONERA 3D icing code and comparison with 3D experimental shapes: AIAA-93-0169[R]. Reston: AIAA, 1993. |
49 | MORENCY F, BEAUGENDRE H, BARUZZI G S, et al. FENSAP-ICE: A comprehensive 3D simulation system for in-flight icing: AIAA-2001-2566[R]. Reston: AIAA, 2001. |
50 | BEAUGENDRE H, MORENCY F, HABASHI W G. FENSAP-ICE: Roughness effects on ice shape prediction: AIAA-2003-1222[R]. Reston: AIAA, 2003. |
51 | CROWE C T, SCHWARZKOPF J D, SOMMERFELD M, et al. Multiphase flows with droplets and particles [M]. 2nd ed. Boca Raton: CRC Press, 2012. |
52 | FORTIN G, ILINCA A, LAFORTE J L, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling: AIAA-2003-1076[R]. Reston: AIAA, 2003. |
53 | FORTIN G, LAFORTE J L, BEISSWENGER A. Prediction of ice shapes on NACA0012 airfoil: AIAA-2003-01-2154[R]. Reston: AIAA, 2003. |
54 | 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 54-60. |
WANG F J. Computational fluid dynamics analysis: Principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 54-60 (in Chinese). | |
55 | 周志宏, 李凤蔚, 李广宁. 基于两相流欧拉方法的翼型结冰数值模拟[J]. 西北工业大学学报, 2010, 28(1): 138-142. |
ZHOU Z H, LI F W, LI G N. Applying Eulerian droplet impingement model to numerically simulating ice accretion but with some improvements[J]. Journal of Northwestern Polytechnical University, 2010, 28(1): 138-142 (in Chinese). | |
56 | 杨胜华, 林贵平. 机翼结冰过程的数值模拟[J]. 航空动力学报, 2011, 26(2): 323-330. |
YANG S H, LIN G P. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2011, 26(2): 323-330 (in Chinese). | |
57 | 中国民用航空总局, 美国联邦航空局. 中华人民共和国/美利坚合众国双边适航协议实施程序细则[EB]. 北京: 中国民用航空总局, 美国联邦航空局, 1995. |
General Administration of Civil Aviation of China, Federal Aviation Administration. U.S./People’s Republic of China Bilateral Airworthiness Agreement Schedule of Implementation Procedures[EB]. Beijing: CAAC/FAA, 1995. | |
58 | 高郭池, 李保良, 丁丽, 等. 气动除冰飞机结冰风洞试验技术[J]. 实验流体力学, 2019, 33(2): 95-101. |
GAO G C, LI B L, DING L, et al. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101 (in Chinese). | |
59 | 高郭池, 丁丽, 李保良, 等. 气动除冰类飞机结冰风洞试验适航审定技术[J]. 实验流体力学, 2019, 33(2): 85-94. |
GAO G C, DING L, LI B L, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 85-94 (in Chinese). | |
60 | 王洪伟, 李先哲, 宋展. 通用飞机结冰适航验证关键技术及工程应用[J]. 航空学报, 2016, 37(1): 335-350. |
WANG H W, LI X Z, SONG Z. Key airworthiness validation technologies for icing of general aviation aircraft and their engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 335-350 (in Chinese). | |
61 | 中国民用航空局. 航空器型号合格审定程序: AP-21-AA-2011-03-R4 [S]. 北京:中国民用航空局, 2011. |
Civil Aviation Administration of China. Type certification procedures for aircraft: AP-21-AA-2011-03-R4 [S]. Beijing: CAAC, 2011 (in Chinese). | |
62 | 中国民用航空局. 型号合格审定程序: AP-21-AA-2022-11 [S]. 北京: 中国民用航空局, 2022. |
Civil Aviation Administration of China. Type certification procedures for aircraft: AP-21-AA-2022-11 [S]. Beijing: CAAC, 2022 (in Chinese). | |
63 | Federal Aviation Administration. Type certification: 8110.4C [S]. Washington, D.C.: FAA, 2011. |
64 | 中国民用航空局. 民用航空产品和零部件合格审定规定: CCAR-21-R4 [S].北京: 中国民用航空局, 2017. |
Civil Aviation Administration of China. Airworthiness standards: Civil aviation products and parts: CCAR-21-R4 [S]. Beijing: CAAC, 2017 (in Chinese). | |
65 | Federal Aviation Administration. CFR 14 Part 21 Certification procedures for products and articles [S]. Washington, D.C.: FAA, 2018. |
66 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016. |
Civil Aviation Administration of China. Airworthiness standards: Transport category airplanes: CCAR-25-R4 [S]. Beijing: CAAC, 2016 (in Chinese). | |
67 | 贾胜博. 飞机自然结冰试飞空域选择的研究[D]. 广汉: 中国民用航空飞行学院, 2015: 15-17. |
JIA S B. The research on select the airspace of aircraft nature icing test[D]. Guanghan: Civil Aviation Flight University of China, 2015: 15-17 (in Chinese). | |
68 | 张强, 范东方, 刘旭华. 自然结冰试飞成功的影响因素研究[J]. 航空科学技术, 2013, 24(3): 43-45. |
ZHANG Q, FAN D F, LIU X H. A study on key factors to success of natural icing flight test[J]. Aeronautical Science and Technology, 2013, 24(3): 43-45 (in Chinese). | |
69 | BERNSTEIN B C, CAMPO W, ALGODAL L, et al. The embraer-170 and-190 natural icing flight campaigns: keys to success[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 264. |
70 | 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12): 1578-1586. |
ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1578-1586 (in Chinese). | |
71 | 邹建红, 叶林, 安洁, 等. 用于气象观测的光纤结冰探测仪[J]. 仪表技术与传感器, 2012(4): 15-17, 40. |
ZOU J H, YE L, AN J, et al. Fiber-optic ice detector for meteorological observation[J]. Instrument Technique and Sensor, 2012(4): 15-17, 40 (in Chinese). | |
72 | POLITOVICH M K, SAND W R. Proposed icing severity index based upon meteorology[C]∥ 4th International Conference on Aviation Weather Systems. Washington, D.C.: FAA, 1991: 24-27. |
73 | PRUZAN D, KHATKHATE A, HICKMAN G. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance, Part 1: Capacitive ice detector development[J]. Engineering, Environmental Science, 1993, 2: 23-27. |
74 | CLAFFEY K J, JONES K F, RYERSON C C. Use and calibration of Rosemount ice detectors for meteorological research[J]. Atmospheric Research, 1995, 36: 277-286. |
75 | 王华, 王以伦, 张滨华. 基于磁致伸缩原理的结冰传感器设计理论[J]. 电工技术学报, 2003, 18(6): 77-79, 11. |
WANG H, WANG Y L, ZHANG B H. Theory of designing ice detector based on magnetostriction[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 77-79, 11 (in Chinese). | |
76 | ROY S, IZAD A, DEANN R G, et al. Smart ice detection systems based on resonant piezoelectric transducers[J]. Sensors and Actuators, 1998, 69(3): 243-250. |
77 | IKIANDES A A, ARMSTRONG D J, HARE G G, et al. Fibre optic sensor technology for air conformal ice detection[C]∥ Industrial and Highway Sensors Technology. New York: SPIE, 2004: 357-368. |
78 | GLASS M, GRANTHAM D. Response of clound microthysical instruments to aircraft icing conditions[J]. Environmental Science, Physics, 1982, 3: 21-26. |
79 | HOOVER G A. Aircraft ice detectors and related technologies for on-ground and in-flight applications: DOT/FAA/CT-92/27[R]. Washington, D.C.: FAA, 1993. |
80 | 朱程香, 孙志国, 付斌, 等. 探头式结冰探测器安装位置分析[J]. 航空动力学报, 2011, 26(12): 2676-2683. |
ZHU C X, SUN Z G, FU B, et al. Analysis on installation location of probe-style ice detectors[J]. Journal of Aerospace Power, 2011, 26(12): 2676-2683 (in Chinese). | |
81 | Federal Aviation Administration. Flight test guide for certification of Part23 airplanes: AC23-8B [S]. Washington, D.C.: FAA, 2003. |
82 | Federal Aviation Administration. Flight test guide for certification of Part23 airplanes: AC23-8C [S]. Washington, D.C.: FAA, 2011. |
83 | 高郭池, 全敬泽, 李保良, 等. Y12F飞机局方审定飞行试验研究[J]. 飞行力学, 2020, 38(1): 84-89. |
GAO G C, QUAN J Z, LI B L, et al. Research on the administration certification flight test of the Y12F aircraft[J]. Flight Dynamics, 2020, 38(1): 84-89 (in Chinese). | |
84 | 王洪伟, 全敬泽, 乔伟, 等. 失速警告装置防冰冰风洞试验验证技术研究[J]. 航空科学技术, 2021, 32(10): 61-67. |
WANG H W, QUAN J Z, QIAO W, et al. Research on anti-ice validation technology through icing wind tunnel test for stall warning device[J]. Aeronautical Science and Technology, 2021, 32(10): 61-67 (in Chinese). | |
85 | 中国民用航空局. 审定试飞风险管理政策: ACM-MG-004 [S]. 北京: 中国民用航空局, 2022. |
Civil Aviation Administration of China. Risk management policy on certification flight test: ACM-MG-004 [S]. Beijing: CAAC, 2022 (in Chinese). | |
86 | 中国民用航空局. 中国民航试飞员和试飞工程师的职责、程序和培训要求: AP-21-AA-2012-33 [S]. 北京: 中国民用航空局, 2012 (in Chinese). |
Civil Aviation Administration of China. Responsibilities, procedures and training requirements of CAAC flight test pilots and flight test engineers: AP-21-AA-2012-33 [S]. Beijing: CAAC, 2012 (in Chinese). | |
87 | 中国民用航空局. 航空器型号合格审定试飞安全计划: AP-21-AA-2014-31R1 [S]. 北京:中国民用航空局, 2014. |
Civil Aviation Administration of China. Type certification flight test safety plan: AP-21-AA-2014-31R1 [S]. Beijing: CAAC, 2014 (in Chinese). | |
88 | 中国民用航空局. 正常类飞机适航规定: CCAR-23-R4 [S]. 北京:中国民用航空局,2022. |
Civil Aviation Administration of China. Airworthiness standards: Normal category airplanes: CCAR-23-R4 [S]. Beijing: CAAC, 2022 (in Chinese). |
[1] | 刘进一, 熊建军, 桂康, 葛俊锋, 叶林. 基于多光谱和复阻抗的复合结冰探测技术[J]. 航空学报, 2023, 44(S2): 729309-729309. |
[2] | 刘冠冕, 张帆, 程志航, 杨康智, 秦何军. 多发螺旋桨飞机结冰气象探测器安装位置研究[J]. 航空学报, 2023, 44(S2): 729295-729295. |
[3] | 张鸿健, 张晏鑫, 熊建军, 赵照, 冉林, 易贤. 冰层中相控阵超声波束传播特性的数值模拟[J]. 航空学报, 2023, 44(S2): 729289-729289. |
[4] | 丁军亮, 赵利利, 杨涛, 张海妮, 申晓霞. 自然结冰飞行试验技术综述[J]. 航空学报, 2023, 44(17): 28270-028270. |
[5] | 张丽芬, 葛鑫, 刘振侠. 人工制备冰雹的力学性能试验研究[J]. 航空学报, 2021, 42(2): 224255-224255. |
[6] | 马赞, 周中华, 王鹏, 胡剑波, 柯炳清. 仅用作航空器追踪的北斗机载设备适航要求分析[J]. 航空学报, 2019, 40(11): 323155-323155. |
[7] | 丁娣, 车竞, 钱炜祺, 汪清. 基于H∞算法的飞机机翼结冰气动参数辨识[J]. 航空学报, 2018, 39(3): 121626-121626. |
[8] | 李志平, 王孟琦. 进气畸变下航空发动机失速/喘振适航审定方法[J]. 航空学报, 2015, 36(9): 2947-2957. |
[9] | 陆中, 戎翔, 周伽, 陈康. 基于蒙特卡罗仿真的FADEC系统多故障TLD分析方法[J]. 航空学报, 2015, 36(12): 3970-3979. |
[10] | 白天, 朱春玲, 李清英, 朱程香. 压电双晶片悬臂梁结构用于结冰探测的研究[J]. 航空学报, 2013, 34(5): 1073-1082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学