1 |
张哲璇, 龙腾, 徐广通, 等. 重访机制驱动的多无人机协同动目标搜索方法[J]. 航空学报, 2020, 41(5): 323314.
|
|
ZHANG Z X, LONG T, XU G T, et al. Revisit mechanism driven multi-UAV cooperative search planning method for moving targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323314 (in Chinese).
|
2 |
熊伟, 朱洪峰, 崔亚奇. 在线学习的循环自适应机动目标跟踪算法[J]. 航空学报, 2022, 43(5): 325250.
|
|
XIONG W, ZHU H F, CUI Y Q. Recurrent adaptive maneuvering target tracking algorithm based on online learning[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 325250 (in Chinese).
|
3 |
陈军, 张新伟, 徐嘉, 等. 有人/无人机混合编队有限干预式协同决策[J]. 航空学报, 2015, 36(11): 3652-3665.
|
|
CHEN J, ZHANG X W, XU J, et al. Human/unmanned-aerial-vehicle team collaborative decision-making with limited intervention[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3652-3665 (in Chinese).
|
4 |
胡腾, 刘占军, 刘洋, 等. 多无人机3D侦察路径规划[J]. 系统工程与电子技术, 2019, 41(7): 1551-1559.
|
|
HU T, LIU Z J, LIU Y, et al. 3D surveillance path planning for multi-UAVs[J]. Systems Engineering and Electronics, 2019, 41(7): 1551-1559 (in Chinese).
|
5 |
李绍斌, 姜大立, 杨西龙, 等. 基于混合遗传算法的多基地多无人机战场物资配送任务分配[J]. 装甲兵工程学院学报, 2019, 33(2): 10-19.
|
|
LI S B, JIANG D L, YANG X L, et al. Multi-base and multi-UAV battlefield material distribution task assignment based on hybrid genetic algorithm[J]. Journal of Academy of Armored Force Engineering, 2019, 33(2): 10-19 (in Chinese).
|
6 |
QIE T Q, WANG W D, YANG C, et al. A path planning algorithm for autonomous flying vehicles in cross-country environments with a novel TF-RRT* method[J]. Green Energy and Intelligent Transportation, 2022, 1(3): 100026.
|
7 |
杨勇, 丁勇, 黄鑫城. 改进APF与Bezier相结合的多无人机协同避碰航路规划[J]. 电光与控制, 2018, 25(11): 36-41.
|
|
YANG Y, DING Y, HUANG X C. Multi-UAV cooperative collision avoidance route planning based on improved artificial potential field and Bezier curve[J]. Electronics Optics & Control, 2018, 25(11): 36-41 (in Chinese).
|
8 |
包昕幼. 浅水区域无人探测艇编队巡航路径规划研究[D]. 广州: 华南理工大学, 2018.
|
|
BAO X Y. Study on cruise route planning of unmanned exploration vessel formation in shallow water area[D]. Guangzhou: South China University of Technology, 2018 (in Chinese).
|
9 |
HE S D, WANG M, DAI S L, et al. Leader-follower formation control of USVs with prescribed performance and collision avoidance[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 572-581.
|
10 |
DAI S L, HE S D, LIN H, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4237-4246.
|
11 |
HAN G J, LONG X H, ZHU C, et al. A high-availability data collection scheme based on multi-AUVs for underwater sensor networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(5): 1010-1022.
|
12 |
马朋, 张福斌, 徐德民. 基于距离量测的双领航多AUV协同定位队形优化分析[J]. 控制与决策, 2018, 33(2): 256-262.
|
|
MA P, ZHANG F B, XU D M. Optimality analysis for formation of MAUV cooperative localization with two leaders based on range measurements[J]. Control and Decision, 2018, 33(2): 256-262 (in Chinese).
|
13 |
RIDAO P, CARRERAS M, RIBAS D, et al. Intervention AUVs: The next challenge[J]. Annual Reviews in Control, 2015, 40: 227-241.
|
14 |
NI J J, YANG L, WU L Y, et al. An improved spinal neural system-based approach for heterogeneous AUVs cooperative hunting[J]. International Journal of Fuzzy Systems, 2018, 20(2): 672-686.
|
15 |
QIN H L, MENG Z H, MENG W, et al. Autonomous exploration and mapping system using heterogeneous UAVs and UGVs in GPS-denied environments[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1339-1350.
|
16 |
BELLA S, BELBACHIR A, BELALEM G. A centralized autonomous system of cooperation for UAVs-monitoring and USVs-cleaning[M]∥ Unmanned Aerial Vehicles. Hershey: IGI Global, 2019: 347-375.
|
17 |
BELLA S, BELBACHIR A, BELALEM G. A hybrid architecture for cooperative UAV and USV swarm vehicles[C]∥ International Conference on Machine Learning for Networking. Cham: Springer, 2019: 341-363.
|
18 |
LI Y, MA T, CHEN P Y, et al. Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation[J]. Ocean Engineering, 2017, 133: 107-115.
|
19 |
SHEN C, SHI Y, BUCKHAM B. Integrated path planning and tracking control of an AUV: A unified receding horizon optimization approach[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1163-1173.
|
20 |
CUI R X, LI Y, YAN W S. Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT* [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(7): 993-1004.
|
21 |
WU Y. Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous underwater vehicle (AUV) in an underwater target strike mission[J]. Ocean Engineering, 2019, 182: 162-173.
|
22 |
ZHANG H, LIU C, ZHAO W Z. Segmented trajectory planning strategy for active collision avoidance system[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100002.
|
23 |
韩凯, 董日昌, 邵丰伟, 等. 基于改进遗传算法的导航卫星星间链路网络动态拓扑优化技术[J]. 航空学报, 2022, 43(9): 326095.
|
|
HAN K, DONG R C, SHAO F W, et al. Dynamic topology optimization of navigation satellite inter-satellite links network based on improved genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 326095 (in Chinese).
|
24 |
赵鹏程, 宋保维, 毛昭勇, 等. 基于改进的复合自适应遗传算法的UUV水下回收路径规划[J]. 兵工学报, 2022, 43(10): 2598-2608.
|
|
ZHAO P C, SONG B W, MAO Z Y, et al. Path planning for UUV underwater recovery based on improved composite adaptive genetic algorithm[J]. Acta Armamentarii, 2022, 43(10): 2598-2608 (in Chinese).
|
25 |
WU Y, LOW K H, LV C. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6782-6787.
|
26 |
吴宇, 苏析超, 崔佳鹏, 等. USV&AUV水下目标协同搜索与打击航迹规划[J]. 控制与决策, 2021, 36(4): 825-834.
|
|
WU Y, SU X C, CUI J P, et al. Coordinated path planning of USV & AUV for an underwater target[J]. Control and Decision, 2021, 36(4): 825-834 (in Chinese).
|